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Intruduction

Solving Navier-Stokes equations is the very tedious problem in fluid

dynamics.

Finite Difference scheme is intoduced to solve NSE.

We’ll write Navier-Stokes equations as abbreviation form:

NSE
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Mathematical Derivation

Solving Navier-Stokes equations is the very tedious problem in fluid

dynamics.

Finite Difference scheme is intoduced to solve NSE.

We’ll write Navier-Stokes equations as abbreviation form:

ajsdkl; f (1)
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Numerical Methods for NSE

When we discuss about numerical methods for NSE, important

questions we should keep in our mind, that is:

I ’Are the existing solution algorithms for incompressible flow

problems already optimal or os further, maybe even tremendous

improvement necessary?’

I ’Could our solution of numerical methods used for solving NSE

be an ’efficient’ and ’robust’ one?’

I ’What’s the bottleneck of our numerical method? What are the

advantages? What are the shortcomings?’
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Recall NSE

NSE has general form as below,

asdf (2)

with appropriate boundary conditions and initial condition.
That’s take a roughly look at discretization of terms in NSE.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Discretization of Terms in NSE - Convective term

Differential and integral forms of convective term are,

∂(ρuiuj)

∂xj
and

∫
S

ρuiv · ndS. (3)

Noted that,

1. Convective term is non-linear.

2. Convective term can be solved by FD, FV, FE ... etc.
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Discretization of Terms in NSE - Viscous term

Differential and integral forms of viscous term are,

∂τij

∂xj
and

∫
S

(τijij) · ndS. (4)

Noted that,

1. For Newtonian and incompressible flow, τij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)
.

2. Convective term can be solved by FD, FV, FE ... etc.

3. Diffusion terms and extra terms disappear for incompressible

flows.

4. Other distributions of viscosity such as bulk viscosity can be

identified.
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Discretization of Terms in NSE - Pressure term

Differential forms of pressure term is,

− ∂p

∂xi
. (5)

Noted that,

1. This can be solved by FD, FV, FE ... etc.

2. Numerical methods for this derivative term might be differet

from velocity terms since grid-setting of pressure and velocity

may not coincide on the same grid.

3. Operator consistence must be paid attention all the time.
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Discretization of Terms in NSE - Pressure term

Integral form of pressure term has two approach concept. One is

conservative approach,

−
∫

S

pii · ndS. (6)

That is treated pressre term as a surface force.

The other is non-conservative approach,

−
∫

Ω

∇p · iidΩ, (7)

by viewing it in volumetric form.
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Discretization of Terms in NSE - Pressure term

Noted that,

1. Difference of these integral forms appears for FV, doesn’t for FD.

2. Conservative approach plays an important role for solving NSE,

related to efficiency and accuracy of the numerical solution

method.

3. Non-conservative approach introduces a global non-conservative

error, which may be significant for finite grid size.
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Discretization of Terms in NSE - Body-force terms

Body force terms can be conservative, such as gravitive force, or

non-conservative. These terms are function of one or more variables,

velocity, time for examples. If relating to velocity field, we might treat

them by using central differece scheme in order to avoid destablization

of the diagonal dominance of the matrix. Otherwise , the extra term

is needed to be icluded.
In FV methods, these terms are integrated over the CV volume,
usually using mean value approach, therefore they are calculated at
the CV center.
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Conservation

When we talk about conservation of something, we immediately think

of something that doesn’t change, more specific, in a specific region.

Quite a few conservation laws are discribed in physical and

mathematical problems, such as First Thermodynamic Law, Energy

conservation.

A question arise when we mention conservative concept of a specific

physical variable:

I How can we say that is conservative? By what reason and by

what language?

We have to think about it first when we go on.
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Conservation-Momentum

In fluid dynamics, Energy conservation and Momentum conservation

are usually discussed. Discretized numerical schemes should,

somehow, maintain these conservation.
Momentun conservation....
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Conservation-Energy

Energy conservation is a more complex issue, in different physical
conditions, significance of specific type of energy might be different,
such as ocassion that heat transfer is important than kinetic energy.
Energy equation can be derived by taking the scalar product of the
momentum equation with the velociy.
We are primarily focus on kinetic energy conservation. In FV point of
view, integral form of kinetic energy equation is,

∂

∂t

∫
Ω

ρ
v2

2
dΩ = −

∫
S

ρ
v2

2
v · ndS −

∫
S

pv · ndS +

∫
S

(S · v) · ndS

−
∫

Ω

(S : gradv − pdiv(v) + ρb · v)dΩ, (8)

after applying Gauss’ theorem.
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Conservation-Energy

Several points of the energy equation are worth mentioning.

I If volumetric integral terms vanish, convection or pressure terms

affect kinetic energy only on the surface of the CV.

I Kinetic energy in globally conserved.

I Kinetic energy equation shouldn’t look as separate equation due

to it is derived from momentun equations.

I Local Energy conservation can imply that velocity is bounded

(in a CV).

I Energy method for proving stability of a numerical method.
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Conservation-Energy

I Energy conservation says nothing about convergence or accuracy,

an accurate convergent numerical scheme can be not consevative.

I Kinetic energy conservation is important in computing unsteady

flows.

I We ask numerical method to hold some form of Discretized

Energy Conservation Equation, but not easy to hold.

I Pressure terms are most important, since it can limit operators

choosen for ‘velocity’ and ‘pressure’ terms. Derivation is shown

in the next page.
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Conservation-Energy

Consider equality:

v · grad(p) = div(pv)− pdiv(v), (9)

general discretized scheme of this equaliy in integral form is:

N∑
i=1

uiGip∆Ω =
∑
Sb

pvn∆S −
∑
N

pDiui∆Ω, (10)

where N is the number of CVs, Sb is the velocity that is normal to
the surface, and Diui is the discretized velocity divergence in the
continuity equation.
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Conservation-Energy

Rewrite (10), we can get:

N∑
i=1

(uiGip + pDiui)∆Ω = surface terms. (11)

If we use backward FD for pressure gradient terms, forward FD for

divergence operator, we can get ‘okay’ numerical ‘consistent’ scheme,

that is:

N∑
i=1

[(pi − pi−1)ui + (ui+1 − ui)pi] = uN+1pN − u1p0. (12)

Right hand side values are determined by only surface grid points.
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Conservation-Energy

If we use ..........
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Conservation-Energy

I Energy equation gives constraints when solving Poisson

equation. ‘Divergence operator’ v.s ‘Gradient operator’.

I We should concern energy transfer, from kinetic to internal

energy due to viscous dissipation. It might be significant in both

compressible and improssible flows.

I The Crank-Nicolson is a good choice for time iteration scheme,

due to its prperty of energy conservation.

I Momentum and energy conservation are governed by the same

equations, thus make construction of numerical method difficult.
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Conservation-Energy

I Discretize strong conservative form of momentum equations with

FV metohd usually assures energy conservation globally.

I Adjustments are made if our numerical results are not energy

conservative.

I For unsteady flows, such as simulation of global weather or

simulation of turbulent, if energy conservation doesn’t hold

growth of kinetic energy or instabily might occur.

I For rotational flow, Angular Momentum Conservation is

important that we should concern. Central difference schemes

are much betther than upwind schemes w.r.t. angular

momentum conservation.
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Variable Arrangement on the Grid

There are at least two types of variable arrangement, one is
Colocated Arrangement, the other is Staggered Arrangements.
I think any numerical scheme should clarified the relationship between
these two arrangement for specific variable we want to get, since FV
or FD concept can therefore easily insert to help to sovle problems.
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Colocated Arrangement

Advantages of colocated arrangement are:

I Useful in complicated solution domain.

I with boundaries that have slope discontinuities.

I with boundary conditions are discontinuous.

I avoid variables located at singularities.

Disadvantages are:

I for long time computation of incompressible flows, difficulties

about pressure-velocity coupling arize.

I oscillations in the pressure term occur.
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Staggered Arrangement

Harlow and Welsh (1965) first introduce staggered arrangement in

Cartesian cordinates. The biggest advantage of the staggered

arrangement are,

1. Strong coupling between the velocities and the pressure, helping

avoid some problems of convergence and oscillations in pressure

and velocity fields.

2. Conservative of kinetic energy.

Other staggered arrangements are to be introduce, such as partially
staggered ALE method. But drawbacks of oscillation of pressure and
velocity might occur.
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Calculation of the Pressure

Calculation of the Pressure

NSE is hard to solve because velocity and pressure are coupled in

three momentum equations, therefore no independnet equation for the

pressure term is valid.

I In compressible flows the continuity equaiton can be used to

determine the density and the pressure can be calculated from

state equations.

I In incompressible flows or low Mach number flows, continuity

equation is not valid.

Our first goal is to derived pressure equation by divergence of
momentum equation with continuity equation and then solve it by
numerical method.
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Calculation of the Pressure

Derivation of pressure equation

Take divergence to the momentum equation and then use continuity

equation to simplify it, we can get:

div(gradp) = −div

[
div(ρvv − S)− ρb +

∂(ρv)

∂t

]
, (13)

component form:

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂

∂xj
(ρuiuj − τij)

]
+

∂(ρbi)

∂xi
+

∂2ρ

∂t2
. (14)

For the case of constant density and viscosity, the viscous and
unsteady terms disappear by virtue of the continuity equation leaving:
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Calculation of the Pressure

Derivation of pressure equation

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂(ρuiuj)

∂xj

]
. (15)

This equation can be solved by numerical method for elliptic type
equations, in this case, it can be viewed as a Poisson equation, which
contains a ‘Laplacian’ operator.
In numerical point of view, the ’Laplacian’ operator is products of
divergence and gradint, so that two operators have to be choosen
carefully and consistently. To maintain consistency, it is best to derive
pressure equation from discretized momentum and continuity
equations rather than discretize equation (15) directly. Our frist
example for solving NSE can see what’s going on.
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Calculation of the Pressure

First Example for Solving NSE - Explicit Time Advance

1. Semi-discretize (only in space δ
δxj

not in time) momentum
equation:

∂(ρui)

∂t
= −δ(ρuiuj)

δxj
− δp

δxi
+

δτij

δxj
= Hi −

δp

δxi
, (16)

where Hi is notation for the advective and viscous terms, which is not
important here.
2. Discretize for time advancement by Euler forward method:

(ρui)
n+1 − (ρui)

n = ∆t

(
Hn

i −
δpn

δxi

)
, (17)

where Hi is calculated by ui at time step n.
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Calculation of the Pressure

First Example for Solving NSE - Explicit Time Advance

3. Suppose divegence of momentum is free at any time step, in
general this doesn’t hold, that is to satisfy continuity equation:

δ(ρui)
m

δxi
= 0, (18)

where m = n, n + 1..., different time steps. Now take numerical
divergence on (17),

δ(ρui)
n+1

δxi
− δ(ρui)

n

δxi
= ∆t

[
δ

δxi

(
Hn

i −
δpn

δxi

)]
. (19)

Force LHS of equation above to be zero maintaining divergence free.
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Calculation of the Pressure

First Example for Solving NSE - Explicit Time Advance

4. Poisson equation for the perssure pn then is derived:

δ

δxi

(
δpn

δxi

)
=

δHn
i

δxi
, (20)

note that red operator is inherited from continuity equation, blue
operator is from momentum equation. If equation (20) holds, then
velocity field at time step n + 1 is divergence free in discretized
operator.
Let’s go back to equation 18, this equation does not always hold with
discretized divergence operator. In particulr, initial data can fit these
equations? That’s we must take care about and make modification if
necessary.
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Calculation of the Pressure

First Example for Solving NSE - Explicit Time Advance

The following algorithm for this explicit time-advancing scheme
summaried below:

1. Start with a velocity field un
i at time tn which is assume to be

divergence free, if not correct it.

2. Compute Hn
i and its divergence.

3. Solve the Poisson equation for the pressure pn.

4. Compute the velocity field at n + 1 time step, which is
intrisically divergence free.

Drawbacks:

I Not accurate!

I Stability region is small
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Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

Similar as previous explicit method, we use classical backward Euler
method to discretize momentum equation (46):

(ρui)
n+1 − (ρui)

n = ∆t

(
−δ(ρuiuj)

n+1

δxj
− δpn+1

δxi
+

δτn+1
ij

δxj

)
. (21)

Then derive pressure equation:

δ

δxi

(
δpn+1

δxi

)
=

δHn+1
i

δxi
, (22)

where Hi is notation for the advective and viscous terms, which is not
important here.
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Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

Problem arises here that pressure cannot be calculated until velocity

field at time n + 1 is calculated. That is Poisson equation and the

momentum equations have to be solved simultaneously. This can only

be done by some iteration method.

Still another problem is that even if the pressure were known, equaion

(22) are large system of non-linear equations which must be solved for

the velocity field.
We can view this system as the matrix of FD Laplace equation, if we
want to solve this accurately, Newton-Raphson iteration method or a
secant method can be used.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

Problem arises here that pressure cannot be calculated until velocity

field at time n + 1 is calculated. That is Poisson equation and the

momentum equations have to be solved simultaneously. This can only

be done by some iteration method.

Still another problem is that even if the pressure were known, equaion

(22) are large system of non-linear equations which must be solved for

the velocity field.
We can view this system as the matrix of FD Laplace equation, if we
want to solve this accurately, Newton-Raphson iteration method or a
secant method can be used.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

An alternating way for solving non-linear matrix directly is by
linearizing the non-linear terms in equation (22). Suppose that,

un+1
i = un

i + ∆ui pn+1
i = pn

i + ∆pi, (23)

then non-linear term in Hn
i can be expressed as:

un+1
i un+1

j = un
i un

j + un
i ∆uj + un

j ∆ui + ∆ui∆uj . (24)

Assume that, for small ∆t, ∆ui ∆t∂ui

∂t , so the last term in this (24) is
second order in ∆t and is smaller in magnitude than the error made
in the time discretization. If we use second order Crank-Nicolson
scheme, this term has error of the same order as the spatial
discretization, thus can be neglected.
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Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

Plug un+1
i and pn+1

i into equation (21), we can get:

ρ∆ui = ∆t(−δ(ρuiuj)
n

δxj
− δ(ρun

i ∆uj)

δxj
−

δ(ρ∆uiu
n
j )

δxj

−δpn

δxi
− δ∆p

δxi
+

δτn
ij

δxj
+

δ∆τij

δxj
) (25)

in which we can see that non-linear term are removed. However we
still need to solve a large system of linear equations.
Alternating direction implicit (ADI) method may be useful by spliting
the equations into a series of one dimensional problems, each of which
is block tridiagonal.
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Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

Summarize discussions of ADI method, algorithm can be stated as:

I Calculate increment velocity from linearized momentum
equation, get u∗i .

I Solve Poisson equation for pressure correction based on
continuity equation:

δ

δxi

(
δ∆p

δxi

)
=

1

∆t

δ(ρu∗i )

δxi
. (26)

I Update the velocity:

un+1
i = u∗i −

∆t

ρ

δ∆p

δxi
, (27)

which satisfy continuity equation.
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Calculation of the Pressure

Second Example for Solving NSE - implicit Time Advance

But we have to pay twice expensive as the explicit method per time
step.
Advantages of this implicit method are:

1. provide accurate solution for unsteady problem.

2. for steady problem without concerning about stability implicit
method are useful.

Drawbacks are:

1. time step will be rather small.

2. error in linearized method no longer negligible for calculation of
steady state problems, pressure-correction methond can be
used avoiding this problem.
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Calculation of the Pressure

Pressure-Correction Methods

Some numerical methods talked before are:

I Newton-Raphson iteration method.

I Secent iteration method.

I Crank-Nicolson scheme.

I Alternating direction implicit (ADI) problem.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

For steady problems, we can view them as unsteady ones that its
solution is going to reach steady state. So, large time steps should be
used in general, implicit methods thus happen to restrictions due to
stability conditions, therefore are preferred for steady and
slow-transient flows.
Some popular implicit methods use pressure equation to enforce mass
conservation at each time step, we call them Pressure-Correction type
methods.
Using pressure equation for mass conservation is the main concept of
Pressure-Correction method.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

Discretized form of momentum equation without including pressure
gradient term in the source term is writtem as:

Aui

P un+1
i,P +

∑
l

Aui

l un+1
i,l = Qn+1

ui
−
(

δpn+1

δxi

)
P

, (28)

where P is the index of the node, l denotes the neighbor points that
appear in the discretized momentum equaiton. Q is the source term
containing variables that can be calculated by un

i and body force or
other lineaized terms at time steps n + 1.
Noted that:

I Iteration methods seem the only choice for solving this equation.

I Steady flows and unsteady flows.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

Iterations should be clearified as:

I Outer iteration is defined as iteration within one time step, in
which coefficient and source matrices are updated.

I Inner iteration performed on linear systems with fixed
coefficients.

On each outer iteration, we ,therefore, solve this:

Aui

P um∗
i,P +

∑
l

Aui

l um∗
i,l = Qm−1

ui
−
(

δpm−1

δxi

)
P

. (29)

RHS of this equation are calculated using results at the preceding
outer iteration when beginning outer iteration.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

Now let’s begin Pressure-Correction processes.
1. Rewrite (29), velocity at node P can be stated as:

um∗
i,P =

Qm−1
ui

−
∑

l A
ui

l um∗
i,l

Aui

P

− 1

Aui

P

(
δpm−1

δxi

)
P

. (30)

Generally speaking, um∗
i,P does not satisfy continuity equation.

Asterisk ∗ means that velocities calculated above are not final values.
For convenience, we let first term on RHS to be ūm∗

i,p .
2. Consider continuity equation:

δ(ρum
i )

δxi
= 0, (31)

which can be achieved by correcting the pressure field.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

Then we can get Poisson equation:

δ

δxi

[
ρ

Aui

P

(
δpm

δxi

)]
P

=

[
δ(ρūm∗

i,p )

δxi

]
P

. (32)

Noted that operators should be clearified as before.
After solving (32), we can get um

i,p. But now, although velocity field
satisfies continuity equation, velocity and pressure fields do not satisfy
momentun equation. We have to utilize another outer iteration until
velocity and pressure fields satisfy both momentum and continuity
equations.
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Implicit Pressure-Correction Methods

Pressure-Correction Methods

Note again that methods of this kind, which first construct velocity
field that does not satisfied continuity equation and then correct it by
subtracting somthing (usually pressure gradient) are known as
projection methods.
SIMPLE Concepts
After we get um∗

i,P and pm−1, we can go forward by another algorithm
of pressure-correction.
1. Suppose that:

um
i = um∗

i + u
′

and pm = pm−1 + p
′
. (33)

Substitude them into momentum equation (29), then we obtain
relation between the velocity and pressure corrections:

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Implicit Pressure-Correction Methods

SIMPLE

u
′

i,P = ū
′

i,P − 1

Aui

P

(
δp

′

δxi

)
P

, (34)

where u
′

i,P = −
P

l A
ui
l u

′
i,l

A
ui
P

.
2. Derive pressure-correction equation by using continuity equation
and (34):

δ

δxi

[
ρ

Aui

P

(
δp

′

δxi

)]
P

=

[
δ(ρum∗

i,p )

δxi

]
P

+

[
δ(ρū

′

i)

δxi

]
P

. (35)

It is common practice to neglect ū
′

i term in RHS.
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Implicit Pressure-Correction Methods

SIMPLEC

Without negelecting term in equation (35), SIMPLEC method is
introduced. 1. Approximate the velocity correction u

′

i at any node,

u
′

i,P ≈
∑

l A
ui

l u
′

i,l∑
l A

ui

l

. (36)

and then approximate ū
′

i,P as

ū
′

i,P ≈ −u
′

i,P

∑
l A

ui

l

Aui

P

, (37)

which , when inserted in (34) we can get:
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Implicit Pressure-Correction Methods

SIMPLEC

u
′

i,P = − 1

Aui

P +
∑

l A
ui

l

(
δp

′

δxi

)
P

. (38)

Substitude this into equation (35), term that be neglected disappears
immediately.
PISO
Still another method...........
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Implicit Pressure-Correction Methods

Fractional Step Methods

Splitting velocity field
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Implicit Pressure-Correction Methods

Streamfunction-Vorticity Methods

For impressible two-dimensional flows with constant flow properties,
concept of streamfunction can be intriduced to solve NSE.
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Artificial Compressibility Methods

Can a numerical method for the compressible flow also validate for
incompressible flow? It is this question that generates methods of
artificial compressibility method.
Compressible flow and incompressible flow are fundamentally
difference in mathematical viewpoint,

I Compressible flow equations are hyperbolic-type, therefore,
characteristic lines control signals travel at finite propagation
speed.

I incompressible flow equations, however, are mixed
parabolic-elliptic-type, lacking of time derivative terms.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Artificial Compressibility Methods

Artificial Compressibility Methods

So, when we want to solve incompressible flow based on method of
compressible one, adding time derivative of the pressure to continuity
equation seems possible, that is why we call ‘Artificial
Compressibility’ !!
Modified continuity can be adapted:

1

β

∂p

∂t
+

∂(ρui)

xi
= 0, (39)

where β is an artificial compressibility parameter whose value is key
to the performance of this method (larger β means more
‘incompressible’).
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Artificial Compressibility Methods

Artificial Compressibility Methods

Addition of time derivative of pressure to the continuity equation
means that we are no longer solving the true incompressible
equations. For unsteady flow this method induce accurate and
applicabiliy problem. At convergence, the time derivative is zero and
the solution satisfied the incompressible equations.
There’s big question that after modifying continuity equations,
equations we solve are the consistence for original problem?
Whatever, that’s move on!
Noted that intermediate velocity field (u∗i )

n+1, does not satisfy the
incompressible continuity equation,[

δ(ρu∗i )
n+1

δxi

]
P

= ∆mP . (40)
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Artificial Compressibility Methods

Artificial Compressibility Methods

Several methods are available, but lots of problems will arize.
Here is an example.
1. Euler backward method used in time derivative due to reach steady
solution as quickly as possible.

pn+1
P − pn

P

β∆t
+

[
δ(ρui)

δxi

]n+1

P

= 0. (41)

Problem is that velocity field is still unknow. 2. Derive Poisson
equation for pressure or pressure correction by lineariation. The
unknow quantity can be approximated:

(ρui)
n+1 ≈ (ρu∗i )

n+1 +

[
∂(ρu∗i )

∂p

]n+1

(pn+1 − pn) (42)
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Shallow Water Equation

Shallow Water Equation

Here is a question we should keep in our mind:
’Are the existing solution algorithms for incompressible flow problems

already optimal or os further, maybe even tremendous improvement

necessary?’
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Shallow Water Equation

Outline

Outline:

I Purpose

I Mathematical Model

I Numerical Method

I Challenge

I Scientific Significance
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Shallow Water Equation

Purpose

I Solve Riemann Problem with Shallow water equation.

I ref: Augmented Riemann solvers for the shallow water equations

over variable topography with steady states and inundation

I Try to be familiar with wave propagation algorithm.

I Dam-breaking testing problem.

I Two-phase Fluid problem.
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Shallow Water Equation

Mathematical Model - Shallow Water Equation

Shallow water equation is based on some concepts:

I ‘dimension approximation’, it reduces the basic problem to one

or two dimensions that are approximately horizontal.

I Integrated in the vertical from a lower boundary to the free

surface, eliminating the free surface as a boundary of the

solution region. So the domain is fixed.
I Two simplications:

1. reducing the dimensions,
2. fixing the solution domain.
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Shallow Water Equation

Mathematical Model - Shallow Water Equation

In environmental fluid mechanics, shallow water model is valid. The most

important assumption is that:

Theorem

the wave length must be long compared to the depth

Tide, tsunamis are examples by the fact that the ocean are at most a few

kilometers deep but there breadth is hundreds of kilometers.

Some empirical information might be included to the shallow water

equation for practical application.
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - First Step

Now let’s derive the shallow water equation.

First, we state conservation equation and boundary conditions.

Consevation of Mass: Z
CS

(~u · ~n)dA = 0, (43)

∂ui

∂xi
= 0. (44)

Conservation of Momentum:

~F =

Z
CV

∂

∂t
(ρ~u)dV +

Z
CS

ρ~u(~u · ~n)dA, (45)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= −

∂p

∂xi
− ρg

∂h

∂xi
−

∂τ + ji

∂xj
. (46)
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - First Step

The following boundary conditions are used:

p = 0 on z = η + H, (47)

Defining free surface as:

S(x, y, z, t) = η(x, y, t) + H − z = 0. (48)

Note that here we consider that particles on the surface remain on the surface.

Take derivative on equation (48) at z = η + H, we can get:

DS

Dt
=

∂η

∂t
+ ũx

∂

∂x
(η + H) + ũy

∂

∂y
(η + H)− ũz = 0, (49)

where ũx means velocity evaluated at z = η + H.
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - First Step

Take derivative on equation (48) at z = H(x, y), which means the solid bottom

and is independent of time, the we can get:

ux
∂H

∂x
+ uy

∂H

∂y
= uz (50)

where ux means velocity evaluated at the solid bottom.
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - Second Step

Integating (44) over the depth,Z η+H

H

„
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

«
dz = 0. (51)

Applied Leibnitz’ theorem to it:

∂

∂t

Z b(y,t)

a(y,t)
f(x, y, t)dx =

Z b(y,t)

a(y,t)

∂f

∂t
dx− f(a, y, t)

∂a

∂t
+ f(b, y, t)

∂b

∂t
. (52)

Then for x-direction term, we can get,Z η+H

H

∂ux

∂x
dz =

∂

∂x

Z η+H

H
uxdz − ũx

∂

∂x
(η + H) + ux

∂H

∂x
. (53)

Similarly, y-component term can be derived as,Z η+H

H

∂uy

∂y
dz =

∂

∂y

Z η+H

H
uydz − ũy

∂

∂y
(η + H) + uy

∂H

∂y
. (54)
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - Second Step

Integating (44) over the depth,Z η+H

H

„
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

«
dz = 0. (51)

Applied Leibnitz’ theorem to it:

∂

∂t

Z b(y,t)

a(y,t)
f(x, y, t)dx =

Z b(y,t)

a(y,t)

∂f

∂t
dx− f(a, y, t)

∂a

∂t
+ f(b, y, t)

∂b

∂t
. (52)

Then for x-direction term, we can get,Z η+H

H

∂ux

∂x
dz =

∂

∂x

Z η+H

H
uxdz − ũx

∂

∂x
(η + H) + ux

∂H

∂x
. (53)

Similarly, y-component term can be derived as,Z η+H

H

∂uy

∂y
dz =

∂

∂y

Z η+H

H
uydz − ũy

∂

∂y
(η + H) + uy

∂H

∂y
. (54)
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - Second Step

Let

ūx =
1

η

Z η+H

H
uxdz ūy =

1

η

Z η+H

H
uydz. (55)

Pluging (55), (53), and (54) in (51)

∂

∂x
(ūxη) +

∂

∂y
(ūyη)− (̃ux)

∂

∂x
(η + H)

+ux
∂

∂x
− ũy

∂

∂y
(η + H) + uy

∂

∂y
+ ũz − uz = 0. (56)

Applying boundary condition (49) and (50)

∂η

∂t
+

∂

∂x
(ūxη) +

∂

∂y
(ūyη) (57)
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ūx =
1

η

Z η+H

H
uxdz ūy =
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(ūxη) +

∂

∂y
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - Third Step

Integrating Momentum equation (46), by similar method, we can get for

x-component,

∂

∂t
(ηūx) +

∂

∂x
(βxxηūx

2) +
∂

∂y
(βxyηūxūy) + gη

∂η

∂x
= gηS0x. (58)

For y-conponent,

∂

∂t
(ηūy) +

∂

∂y
(βyyηūy

2) +
∂

∂x
(βyxηūxūy) + gη

∂η

∂y
= gηS0y (59)

where S0x and S0y denote slopes of the bottom,

S0x = sin θx = −
∂H

∂x
S0y = sin θy = −

∂H

∂y
. (60)
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Shallow Water Equation

Mathematical Model - Shalow Water Equaiton - Third Step

βxy and βxx denote as:

βxy =

RH+η
H uxuydz

ūxūyη
βxx =

RH+η
H u2

xdz

ūx
2η

. (61)

Note that scale analysis is applied when deriving these equation.
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Shallow Water Equation

Numerical Method

I take David L. Deorge’s paper as reference for my numerical method, trying to

solve shallow water system case.

Wave propagation algorithm is shown below:

For a system problem.

qt + A(q, x)qx = 0, (62)

where qt ∈ R and A(q, x) ∈ Rm×m. Note that A(q, x) = A(q) = f
′
(q). So, the first

order scheme:

Qn+1
i = Qn

i −
∆t

∆x
(A+∆Qn

i−1/2 + A−∆Qn
i+1/2), (63)

where Qn+1
i ≈ 1

∆x

R
Ci

q(x, tn)dx, Ci = [xi−1/2, xi+1/2], ∆x = (xi+1/2 − xi−1/2)

and ∆t = (tn+1 − tn).
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Shallow Water Equation

Numerical Method

Note that A+∆Qn
i+1/2

are determined by solutions to Riemann problems ar the

cell interfaces at xi+1/2.

Second order scheme is shown below:

Qn+1
i = Qn

i −
∆t

∆x
(A+∆Qn

i−1/2 + A−∆Qn
i+1/2)−

∆t

∆x
( ˜F n

i+1/2
− ˜F n

i−1/2
), (64)

where ˜F n
i+1/2

can be determined by the waves in the Riemann problems at x1/2.
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Shallow Water Equation

Numerical Method

Furthermore, two-dimension problems can be interpreted as:

qt + A(q, x, y)qx + B(q, x, y)qy = 0, (65)

numerical scheme:

Qn+1
i,j = ... (66)

Semi-discretized scheme for one-dimension:

∂Qi

∂t
= −

1

∆x
(A+∆Qi−1/2 + A−∆Qi+1/2)−

1

∆x
(F̃i+1/2 − F̃i−1/2). (67)

Now RK-method can be applied when we want higher-convergent order

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Shallow Water Equation

Numerical Method

Furthermore, two-dimension problems can be interpreted as:

qt + A(q, x, y)qx + B(q, x, y)qy = 0, (65)

numerical scheme:

Qn+1
i,j = ... (66)

Semi-discretized scheme for one-dimension:

∂Qi

∂t
= −

1

∆x
(A+∆Qi−1/2 + A−∆Qi+1/2)−

1

∆x
(F̃i+1/2 − F̃i−1/2). (67)

Now RK-method can be applied when we want higher-convergent order

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

Shallow Water Equation

Numerical Method

Since this method is FV-based, high order FV method is tried to here.
I think WENO and ENO type scheme might be help for this purpose.
But need more study and discussion.
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Shallow Water Equation

Challenge

I think my challenge is on transforming numerical scheme into

efficient program. And how to create higher-order scheme. I already

got some codes with two-phase model from teacher, and try to read

them in order to help me design my program.
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Shallow Water Equation

Scientific Significance

Not find one!
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NSE with Free Surface

NSE with Free Surface

Free surface flow is the case where the size and shape of the solution
region were part of the solution.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

DieCast Ocean Model

DieCast

DieCast model is based on free surface boundary condition, rigid-lid general

circulation model....... Here is the introduction of DieCast programming process.

Structure of DieCast is:

1. Initialization

I Determined derived scalars
I Read data

OPEN(14,file=’TR’) → run history data

OPEN(19,file=’SV’) → restart data
I CALL INITFS

2. Time Integration Loop 100

I Time step controled by ITF → DAYS
I CALL FS → main computation SUBROUNTINE

3. Save Data

I CALL XYPLOT
I CALL XZPLOT

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

DieCast Ocean Model

Primitive Equations in Diecast

The primitive equations of our ocean general circulation model are,

I Conservation of mass:

∇ ·V = 0, (68)

I Horizontal momentun equations:

∂u

∂t
= −O · uV + fv −

1

ρ0

∂p

∂x
+ Oh ·AhOhu +

∂

∂z
(Av

∂u

∂z
),

(69)

∂v

∂t
= −O · vV − fu−

1

ρ0

∂p

∂y
+ Oh ·AhOhv +

∂

∂z
(Av

∂v

∂z
),

(70)
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DieCast Ocean Model

Primitive Equations in Diecast

I Conservation of scalar(salt or potential temperature)

∂S

∂t
= −O · SV + Oh ·KhOhS +

∂

∂z
(Kv

∂S

∂z
), (71)

I Hydrostatic equation:

∂p

∂z
= −(ρ− ρ̄)g, (72)

I Equation of state:

ρ = ρ(S, T ), (73)

where u and v are the velocity components in x and y directions, the velocity
vector V = (x,y,w). f is Coriolis parameter, ρ0 is the mean density, ρ̄ is the
horizontal average of density at depth z, p is the pressure, AhandAv are the
horizontal and vertical eddy viscosity, S is the salinity, KhandKv are the
horizontal and vertical eddy diffusivity, T is the potential temperature.
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DieCast Ocean Model

DieCast

There are six steps of numerical approach, which is a pressure-correction

type numerical method for NSE. I describe them separately along with

codes in DieCast.

In SUBROUNTINE FS and most SUBROUNTINE, COMMON

command are used for distinquishing variables.

There are sveral velocity arrays use in DieCast, I clearify them here in

order not to confused in latter computation algorithm.

I U is the velocity in the face,

I U2 is the velocity in the center of CV,

I ULF is the previous time’s U2 value,

I
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DieCast Ocean Model

DieCast - Variables

Some important variables are described here, descriptions of all variables

used can be seen in the manual.

I DT: time step size,

I ODT: time step,

I ODX,ODY,ODV,ODXV: inverse horizontal grid increments,

I ODZ: inverse layer thickness array,

I IN: mask array for scala quantities,

I IU,IV,IW: 3-d mask array for staggered ith-component advection

velocity,

I U1,U2,ULF: old, filtered(central), leapfrog x-velocity field,

I U: staggered ‘C’ grid x-component non-divergent advection velocity.
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DieCast Ocean Model

First Step - Pressure

Guess the trial surface pressure p̄n
s from the previous time step, that

is p̄n
s = pn−1

s and integrate the hydrostatic equation (72) in order to
get the intermediate pressure field p̄n over the whole domain.
In SUBROUNTINE FS,

I RHO(I,J,K)=.0002*(20.-
T2(I,J,K)),

I WFACE(I,J,1)=P0(I+1,J+1),

I REDG=G/(1.+100.*EXP(-
0.5*DAYS)),

I TMP=G/ODZ(K)

I WFACE(I,J,L)= WFACE(I,J,K)+
TMP*RHO(I+1,J+1,K)

I from state equation, ρ = ρ(S, T ),
I ’1’ denotes surface layer,
I reduced gravity does not utlize here,
I set TMP variable, g ×∆z

I discrete hydrostatic equation,
pf (i, j, k + 1) =
pf (i, j, k) + gρ(i + 1, j + 1, k)∆z.
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DieCast Ocean Model

First Step - Pressure

Note that WFACE variable is the pressure on the control volume face,
now we interpolate it into control volume averaged pressure.

I P(i+1,j+1,1)=
.5*(WFACE(i,j,1)+WFACE(i,j,2)),

I P(i+1,j+1,K1)=
.5*(WFACE(i,j,K1)+WFACE(i,j,K0)),

I P(i+1,j+1,k)=
12.*(WFACE(i,j,k)+WFACE(i,j,k+1))
+(WFACE(i,j,k)+WFACE(i,j,k+1)
-WFACE(i,j,k-1)-
WFACE(i,j,k+2)),

I P(i,j,k)=O24*P(i,j,k)

I 2nd-order accurate in top and
bottom layler,

I 4th-order accurate in interior
domain,

I P (i + 1, j + 1, k) =
12 ∗ (pf (i, j, k) + pf (i, j, k + 1))
pf (i, j, k) + pf (i, j, k + 1)
−pf (i, j, k − 1)− pf (i, j, k − 2),

I O24= 1.
24.
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DieCast Ocean Model

Second Step - Update Velocities

Update the trial integral average ūn+1, v̄n+1 in the control volume using

discretized momentum equations, e.g. u-component discretized equation:

ūn+1
i,j,k + un−1

i,j,k

∆t
= −(

„
∂Uu

∂x

«n

i,j,k

+

„
∂V u

∂y

«n

i,j,k

+

„
∂Wu

∂z

«n

i,j,k

)

+ [2Ωe sin(φj) + un
i,j,k tan(

φj

re
)]vn

i,j,k

−
„

∂p̄

∂x

«n

i,j,k

+ dissipation, (74)

In SUBROUNTIN FS, Loop 500 is the main computation loop. In this loop it

calculate horizontal velocity components on the control volume face.
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In SUBROUNTIN FS, Loop 500 is the main computation loop. In this loop it

calculate horizontal velocity components on the control volume face.
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DieCast Ocean Model

Second Step - Pressure Gradient

In Loop 500, first it calculate pressure gradient, which is a forth-order accurate

approximation.

Take ∂p
∂x

term as example ( ∂p
∂y

term has similar algorithm).

I UFACE(i,j)=
6.*(P(i,j+1,k)+P(i+1,j+1,k))
+IU(i-1,j+1,k)*IU(i+1,j+1,k)
*(P(i,j+1,k)+P(i+1,j+1,k)
-P(i-1,j+1,k)-P(i+2,j+1,k)),

I UFACE(i,j)=
IU(i,j+1,k)*UFACE(i,j)
+(1.-IU(i,j+1,k))
*12.*(IN(i,j+1,k)*P(i,j+1,k)
+IN(i+1,j+1,k)*P(i+1,j+1,k))

I PX(i,j)=IN(i,j,k)*O12
*(UFACE(i,j-1)-UFACE(i-1,j-1)).

I 4nd-order accurate interpolation

to get pressure on the CV face,

I use nearest neighbor when data

is not available. It may be improved

at duo grid boundary by using

coupled grid values,

I O12= 1.
12.

I IN array is related to bathymetry,

so do IU, IV, IW.
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DieCast Ocean Model

Second Step - Fluxes

Vertical, longitudinal, and latitudinal fluxes are calculated after pressure gradient
is calculated. Fluxes are used to calculated ūn+1, v̄n+1 in the control volume.
Take Vertical fluxes for example (interpolation is done before calculating).

I DO 350 J=2,J1
DO 350 I=2,I1
TMP=W(I,J,L)
UZ(I-1,J-1,LT)=TMP*SCR(I,J,1)
1 -EV(I-1,J-1,K)*(U1(I,J,L)-
U1(I,J,K))*IW(I,J,L)
VZ(I-1,J-1,LT)=TMP*SCR(I,J,2)
1 -EV(I-1,J-1,K)*(V1(I,J,L)-
V1(I,J,K))*IW(I,J,L)
350
TZ(I-1,J-1,LT)=TMP*SCR(I,J,3)
1 -HV(I-1,J-1,K)*(T1(I,J,L)-
T1(I,J,K))*IW(I,J,L)

I SCR(i,j,1): U2 velocity (on the face),

I UZ=W × U+turbulence terms,

I VZ=W × V +turbulence terms,

I TZ=W × T+turbulence terms,

I EV: vertical turbulent viscosity array,

I HV: vertical turbulent diffusivity array.
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Take Vertical fluxes for example (interpolation is done before calculating).

I DO 350 J=2,J1
DO 350 I=2,I1
TMP=W(I,J,L)
UZ(I-1,J-1,LT)=TMP*SCR(I,J,1)
1 -EV(I-1,J-1,K)*(U1(I,J,L)-
U1(I,J,K))*IW(I,J,L)
VZ(I-1,J-1,LT)=TMP*SCR(I,J,2)
1 -EV(I-1,J-1,K)*(V1(I,J,L)-
V1(I,J,K))*IW(I,J,L)
350
TZ(I-1,J-1,LT)=TMP*SCR(I,J,3)
1 -HV(I-1,J-1,K)*(T1(I,J,L)-
T1(I,J,K))*IW(I,J,L)

I SCR(i,j,1): U2 velocity (on the face),

I UZ=W × U+turbulence terms,

I VZ=W × V +turbulence terms,

I TZ=W × T+turbulence terms,

I EV: vertical turbulent viscosity array,

I HV: vertical turbulent diffusivity array.

Yu-Chiao Liang

Numerical PDE - Final Project



Introduction About NSE Numerical Methods for NSE Applications Appendix

DieCast Ocean Model

Second Step - Fluxes

Vertical, longitudinal, and latitudinal fluxes are calculated after pressure gradient
is calculated. Fluxes are used to calculated ūn+1, v̄n+1 in the control volume.
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DieCast Ocean Model

Second Step - Conservation Equations

After calculating fluxes and pressure gradient, we can use (74) to get horizontal
momentum (and temperature) at the next time step on the center of the CV. Take
Longitudinal momentum for example.

I U2(i,j,k)=U1(i,j,k)-DTIN
*((UX(i,j-1)-UX(i-1,j-1)
+PX(i,j))*ODX(j)
+(UY(i-1,j)-UY(i-1,j-1)*ODYJ
+(UZ(i-1,j-1,LT)=UZ(i-1,j-1,LB))
*ODZ(k))

I DTIN=DT*IN(I,J,K)

I LT=2 ??

I LB=1 ??

Loop 500 is finished.
After calculating these variables, ‘Open boundary conditions’ are used. These are
all determined by ‘known’ normal boundary velocity (NBV) i.e. boundary normal
flux is UPWINDED for both inflow and outflow.
Loop 506 for SCALAR fluxes on boundaries, Loop 632 for MOMENTUM fluxes,
Loop 644 for determining NBV.
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all determined by ‘known’ normal boundary velocity (NBV) i.e. boundary normal
flux is UPWINDED for both inflow and outflow.
Loop 506 for SCALAR fluxes on boundaries, Loop 632 for MOMENTUM fluxes,
Loop 644 for determining NBV.
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DieCast Ocean Model

Third Step - Center to Face Transformation

In this step, interpolation of ūn+1, v̄n+1 to Ūn+1
i,j,k, V̄ n+1

i,j,k at the cell face using
4th-order formula is operatied. Take u-momentum for example.

I SCR(i,j,1)=
6.*(U2(i,j,k)+U2(i+1,j,k))

I TMP=IN(i-1,j,k)*IN(i,j,k)
*IN(i+1,j,k)*IN(i+2,j,k)

I SCR(I,J,1)=SCR(I,J,1)+TMP
*(-U2(I-1,J,K)+U2(I,J,K)
+U2(I+1,J,K)-U2(I+2,J,K))

I U(i,j,k)=O12*SCR(i,j,1)*IU(i,j,k)

I forth-order interpolation

I

q̄i+1/2,j,k =
7

12
(Qi,j,k + Qi+1,j,k)

−
1

12
(Qi−1,j,k + Qi+2,j,k)
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DieCast Ocean Model

Fourth Step - Pressure Correction

Before we calculate correction for pressure term, DieCast model do outflow check.

I SUM=SUM+V(I,J1,K)*IN(I,J1,K)
/(ODYV(J1)*ODZ(K))

I SUM=SUM/AROUT

I V(I,J1,K)=V(I,J1,K)
+SUM*IN(I,J1,K)

I FORMAT(’outflow vel correction
= ’,1PE9.2,’ cm/sec’)

I sum over CV in South and North
boundary plus West and East,

I AROUT is the area of bpundary
region to be adjusted to get
zero net inflow,

I AROUT = 4.000607E13

After correction, use divergence free property ∇~v = 0 to get vertical velocity W ,
code is below:
W(I,J,K+1)=W(I,J,K)-((U(I,J,K)-U(I-1,J,K))*ODX(J)
+(CSV(J)*V(I,J,K)-CSV(J-1)*V(I,J-1,K))*TEMP)*TEMP1
S(I-1,J-1)=-W(I,J,KB(I,J)+1)

Note that variables: CSV(J), TEMP, TEMP1.
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DieCast Ocean Model

Fourth Step - Pressure Correction

Idea of Pressure Correction here is that if we set final pressure has the form,
pn = p̄n + ∆p̄, where ∆p is due to the change of rigid-lid pressure and thus
independent of depth. Since p̄n is derived form first step, we need to get ∆p.
Then final velocity can be written as:

Un+1 = Ūn+1 + ∆Ū (75)

V n+1 = V̄ n+1 + ∆V̄ , (76)

where ∆Ū = −∆t ∂∆p̄
∂x

and ∆V̄ = −∆t ∂∆p̄
∂y

.

Integrating (68) we can get,

Z D

0
(
∂Un+1

∂x
+

∂V n+1

∂y
)dz = W n+1(0)−W n+1(D) = 0, (77)
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DieCast Ocean Model

Fourth Step - Pressure Correction

Substitude (75) and (76) into (77), we can get:

Z D

0
(
∂Ūn+1

∂x
+

∂V̄ n+1

∂y
)dz =

Z D

0
−(

∂∆Ū

∂x
+

∂∆V̄

∂y
)dz. (78)

This is a Poisson equation, if we furthermore subsitude ∆Ū = −∆t ∂∆p̄
∂x

and

∆V̄ = −∆t ∂∆p̄
∂y

into it, we get:

Z D

0
−(

∂2∆p

∂x2
+

∂2∆p

∂y2
)dz = f(W ), (79)

where f(W ) can be viewed as the source term.
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DieCast Ocean Model

Fourth Step - Pressure Correction - EVP solver

Now, CALL REP SUBROUNTINE for EVP solver.
Input variable is S, output variable is X.
‘S(I-1,J-1)=-W(I,J,KB(I,J)+1)’.
Littleeasy’s work is mainly focus on here. Parallel EVE solver is promising due to
its highly sufficient for Poisson equaiton.
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DieCast Ocean Model

Fifth Step - Correction

Since we have variable X for pressure correction, we can therefor correct Un+1,
V n+1.

I P0(I,J)=P0(I,J)+ODT*X(I,J)

I SCR(I,J,1)=(X(I+1,J)-
X(I,J))*ODX(J)

I SCR(I,J,2)=(X(I,J+1)-
X(I,J))*ODYV(J)

I U(I,J,K)=U(I,J,K)-
SCR(I,J,1)*IU(I,J,K)

I V(I,J,K)=V(I,J,K)-
SCR(I,J,2)*IV(I,J,K)

I pn = p̄n + ∆p̄

I ∂p
∂x

I ∂p
∂y

I Un+1 = Ūn+1 + ∆Ū

I V n+1 = V̄ n+1 + ∆V̄
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DieCast Ocean Model

Sixth Step - Pressure Correction - EVP solver

It is the last step that interpolate cell average changes ∆ū,∆v̄ from ∆Ū , ∆V̄ by
fourth-order method. Then get:

un+1 = ūn+1 + ∆ū, (80)

vn+1 = v̄n+1 + ∆v̄. (81)

and then finalize computation of this time step.

DO 686 I=2,I1
686 SCR(I,J,1)=12.*(IU(I-1,J,K)*SCR(I-1,J,3)+IU(I,J,K)*SCR(I,J,3))
DO 687 I=3,I2
687 SCR(I,J,1)=SCR(I,J,1)
1 -IU(I-2,J,K)*SCR(I-2,J,3)+IU(I-1,J,K)*SCR(I-1,J,3)
2 +IU(I,J,K)*SCR(I,J,3)-IU(I+1,J,K)*SCR(I+1,J,3)
DO 688 I=2,I1
688 U2(I,J,K)=IN(I,J,K)*(U2(I,J,K)+O24*SCR(I,J,1))
689 CONTINUE
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DieCast Ocean Model

Sixth Step - Incompressible check

Now we check incompressible,

TMP=0.
ERR=0.
DO 710 K=1,K1
DO 710 J=2,J1
DO 710 I=2,I1
TMP1=(U(I,J,K)-U(I-1,J,K))*ODX(J)
TMP2=(CSV(J)*V(I,J,K)-CSV(J-1)*V(I,J-1,K))*OCS(J)*ODY(J)
TMP3=(W(I,J,K+1)-W(I,J,K))*ODZ(K)
TMP=TMP+MAX(ABS(TMP1),ABS(TMP2),ABS(TMP3))*IN(I,J,K)
710 ERR=ERR+ABS(TMP1+TMP2+TMP3)*IN(I,J,K)
ERR=ERR/TMP
WRITE(*,711) ERR
WRITE(14,711) ERR
711 FORMAT(’ *** NORMALIZED mean incompressibility error = ’,1PE9.2)
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DieCast Ocean Model

Sixth Step - FLTW method

Based on the paper ‘Frequency Filter for Time Integrations’ by Richard Asselin,
time filter is introduced into our DieCast model.
We use FLTW, ’Filtered Leap-frog-Trapezoidal Weighted’ scheme, for time
advance, which is a variety of FLT scheme. Basic time filter, for example,

¯F (t) = F (t) + 0.5ν[ ¯F (t− 1)− 2F (t) + F (t + 1)]. (82)

Well-known centered-filter is,

¯F (t) = F (t) + 0.5ν[F (t− 1)− 2F (t) + F (t + 1)]. (83)
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DieCast Ocean Model

Sixth Step - FLTW method

Following Kurihara(1965), consider the differentail model,

∂F

∂t
= iωF. (84)

Write if as difference form with filter, we can get,

F (t + 1)− ¯F (t− 1)

2∆t
= iωAF (t) + i(ω − ωA)

F (t + 1) + ¯F (t− 1)

2∆t
. (85)

where ω and ωA are two parameters.
Filter is used for two purposes:

1. Reducing damping

2. Stability
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DieCast Ocean Model

Sixth Step - FLTW method

By the concept of equation (84), we can update our variables using FLTW
method. Difference equation is,

Qn+1 =
w

2
(Qn + Qn−2) + (1− w)Qn−1, (86)

where Q is arbitary variable. FLTW reduces to FLT for w = 1 and to leap-frog for
w = 0.
Rewrite (86),

Qn+1 = Qn−1 +
w

2
(Qn − 2Qn−1 + Qn−2). (87)

You can view last term as a diffusion term in time, that can ’smooth’ solution

that we got.
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DieCast Ocean Model

Sixth Step - FLTW method

Update using FLTW method,

712 DO 745 K=1,K1
DO 745 J=2,J1
DO 745 I=2,I1
T1(I,J,K)=OFLTW*TLF(I,J,K)+FLTW*(T1(I,J,K)+T2(I,J,K))
U1(I,J,K)=OFLTW*ULF(I,J,K)+FLTW*(U1(I,J,K)+U2(I,J,K))
V1(I,J,K)=OFLTW*VLF(I,J,K)+FLTW*(V1(I,J,K)+V2(I,J,K))
TLF(I,J,K)=T2(I,J,K)
ULF(I,J,K)=U2(I,J,K)
745 VLF(I,J,K)=V2(I,J,K),

where OFLTW=0.9, FLTW=5.0000001E − 02.
U1 is the average values of ULF,U1,U2, so do V1 and T1. U1 is previous time step
center velocity, U2 is what we want to get, ULF is the previous time step center
velocity.
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DieCast Ocean Model

Sixth Step - FLTW method

After doing this, Biharmonic filter is applied by call SUBROUNTINE
BFLTXY in order to reduce surface noise.
Now, the whole computation is complete, ready for next time step’s computation.

We may think about why we need to ‘correct’ variables, now see the model output:
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DieCast Ocean Model

CCD in DieCast model

Before considering how to insert CCD scheme into DieCast, we have to
clarify what variables are in the ‘cell’. or on the ‘face’. When mention to
variables, I’ll note that variable is on the ‘face’ or in the ‘cell’ again.
Some notes are below:

1. Pressure is cell-quantity in general.

2. Pressure gradient is more important than pressure.

3. Velocity variables are cell-quantities when updating momentum
equation,

4. but are face-quantities when checking incompressibility.

5. CCD applies to solve variables respect to face- or cell-quantity.

6. Boundary conditions needs to be inserted to the scheme.

7. Semi-discretized scheme. ‘Space’ then ‘Time’.
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DieCast Ocean Model

Pressure and Pressure gradient

We have: P n−1
s surface pressure.

Control equation: ∂p
∂z

= −ρg.
Goal: get p field over the domain in the center.
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∂p

∂z
= −ρg, =⇒

Z h

0

∂p

∂z
dz = −

Z h

0
ρgdz, =⇒ p(h)− p(0) = −(ρg)× (h− 0). (90)
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DieCast Ocean Model

Pressure and Pressure gradient

We have: Pi.
Goal: get ∂p

∂x
and ∂p

∂y
over the domain in the cell.
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pi. (93)
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Shallow Water Equation

Shallow Water Equation

Here is a question we should keep in our mind:
’Are the existing solution algorithms for incompressible flow problems

already optimal or os further, maybe even tremendous improvement

necessary?’
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