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Abstract

Background: Previous research shows that the flow dynamics in the left ventricle
(LV) reveal important information about cardiac health. This information can be used
in early diagnosis of patients with potential heart problems. The current study
introduces a patient-specific cardiovascular-modelling system (CMS) which simulates
the flow dynamics in the LV to facilitate physicians in early diagnosis of patients
before heart failure.

Methods: The proposed system will identify possible disease conditions and
facilitates early diagnosis through hybrid computational fluid dynamics (CFD)
simulation and time-resolved magnetic resonance imaging (4-D MRI). The simulation
is based on the 3-D heart model, which can simultaneously compute fluid and
elastic boundary motions using the immersed boundary method. At this preliminary
stage, the 4-D MRI is used to provide an appropriate comparison. This allows flexible
investigation of the flow features in the ventricles and their responses.

Results: The results simulate various flow rates and kinetic energy in the diastole and
systole phases, demonstrating the feasibility of capturing some of the important
characteristics of the heart during different phases. However, some discrepancies
exist in the pulmonary vein and aorta flow rate between the numerical and
experimental data. Further studies are essential to investigate and solve the
remaining problems before using the data in clinical diagnostics.

Conclusions: The results show that by using a simple reservoir pressure boundary
condition (RPBC), we are able to capture some essential variations found in the
clinical data. Our approach establishes a first-step framework of a practical patient-
specific CMS, which comprises a 3-D CFD model (without involving actual
hemodynamic data yet) to simulate the heart and the 4-D PC-MRI system. At this
stage, the 4-D PC-MRI system is used for verification purpose rather than input. This
brings us closer to our goal of developing a practical patient-specific CMS, which will
be pursued next. We anticipate that in the future, this hybrid system can potentially
identify possible disease conditions in LV through comprehensive analysis and
facilitates physicians in early diagnosis of probable cardiac problems.
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Background
Research commonly uses computational fluid dynamics (CFD) simulation to investigate

cardiovascular problems. Most of the research in this field focuses on a specific region

of the heart [1,2] rather than on the entire heart. A three-dimensional (3-D), CFD

based, patient-specific cardiovascular modelling-system of the entire heart is currently

underdeveloped. This study introduces a cardiovascular modelling system (CMS)

which may detect possible disease conditions and facilitate early diagnosis prior to

heart failure, using hybrid CFD simulation and time-resolved magnetic resonance ima-

ging (MRI).

Emphasis on the left ventricle (LV) of the heart dates back to the 1970s [3]. Early

experimental studies reported an eddy generation in the LV during ventricular filling,

thought to cause early partial closure that prevents regurgitation. Recent research [4]

notes that the flow dynamics found in the LV reveal important information about

overall cardiac health, useful in early diagnosis of patients with potential heart pro-

blems. However, later studies [5,6] have shown that the valve closure is because of the

developing adverse pressure gradient which causes the flow to decelerate well before it

reverses. Mcqueen and Peskin [7] conducted computational studies to investigate a

natural or prosthetic mitral valve as early as 1982, and later developed a successful 3-D

heart simulation based on idealized hemodynamic conditions [8]. They have used the

immersed boundary method (IBM) to accommodate complex geometries, moving wall,

and fluid-tissue interaction. This approach is much more suitable than other numerical

methods based on structured or unstructured grids because it allows for large grid

deformation and is efficient. Appropriate data on flow rates and pressures of the heart

at various times throughout a cycle enables visualizing and detecting peculiarities

occurring within the heart during simulation, as well as detailed analysis of the flow

pattern within the ventricles of the heart. However, the potential problem with the

approach of Peskin is that the use of the smoothing function results in a “spreading”

effect. In other words, the immersed boundary does not remain a “sharp” interface,

thus reducing accuracy.

Vortex formation in the LV has also attracted recent attention. Fortini et al. [8]

investigated the effect of mechanical heart valves (MHV) on the flow characteristic of

the blood inside an LV model. The three types of tested MHV include (a) a one-way,

hydraulic valve; (b) a monoleaflet valve; and (c) a bileaflet valve. The first configuration

most resembles the natural valve, while the modelled LV is a silicone rubber conical

sack, which is flexible and transparent. A comparison of vorticity shows that valve (a)

produces the simplest plot with only two oppositely signed vortices. The vorticity fields

generated by valves (b) and (c) are more complicated, generating four to five vortices,

which are less orderly compared to the valve (a) case.

Several numerical studies of flow within LV also show the complexity of vortex for-

mation. Domenichini et al. [9] used a mixed spectral-finite differences method to simu-

late the 3-D fluid dynamics inside the LV of the heart during diastole. They analyzed

the sensitivities of several governing parameters, including eccentricity, the Stokes

number, and the Strouhal number, and found well-defined vortice structures, regard-

less of these parameters. As eccentricity increases, the flow field changes smoothly

from axisymmetric to complex 3-D structures when the values are similar to physiolo-

gical ones. The effect of the Stokes number on the flow is rather weak. As the Strouhal
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number decreases, the effect of convection increases and the entry jet extends more

deeply into the ventricle. Instability may follow and result in weak turbulence. How-

ever, their simplified model only comprises the LV of the heart. Hence, a more sophis-

ticated simulation, including the entire 3-D heart, is required. Nevertheless, their

analysis theoretically presents the possible flow structure associated with diverse

parameters.

Saber et al. [10] used patient-specific MRI images to construct the geometry of the

LV of a 3-D heart in a numerical simulation. Hence, the fluid structure interaction

(FSI) prescribes, rather than influences, the geometry of the LV at various instances.

The valves of LV are represented by 2-D planar models. The simulation is based on

another commercial CFD solver, the Star-CD. Saber et al. [10] could not specify the

inflow/outflow rate at the mitral/aortic valves as a boundary condition because of lim-

ited measurements. Therefore, a uniform, constant pressure was prescribed at the

mitral and aortic valves. Their model captured the 3-D contraction and expansion

phases of the LV. However, they underestimated areas of the mitral and aortic valves

with overestimated velocities. This could be due to the low resolution of MRI and

interpolation uncertainties. Saber et al. [10] indicated the importance of clear MRI

images to construct the geometry of LV in simulation. However, blurring or ghosting

artifacts are common in MRI images due to breathing motion and bowel movement

[11]. Particularly for time-resolved 3-D data acquisitions, large amounts of data require

measurement durations that often exceed normal human breath-holding capabilities.

These poor quality images hinder accurate analysis of the heart. Markl et al. [12] used

an improved navigator-gated time-resolved, phase contact MRI (PC-MRI) velocity

mapping based on real-time adaptive k-space reordering, combined with a wider data

acceptance window to improve image quality [12]. This system reconstructs 3-D

images of the heart over a cardiac cycle, as well as time-resolved 3-D hemodynamic

velocity fields, yielding excellent images with moderate blurring and minor ghosting

artifacts. Current available data comprises of both healthy volunteers and patients with

cardiac problems for comparison.

This study develops (and introduces) a 3-D CFD based, patient-specific cardiovascu-

lar modelling system in order to facilitate the physician’s early diagnosis of possible

cardiac problems in practical application. The tools comprise of a 3-D CFD model to

simulate the heart and a 4-D (3-D in space and 1-D in time) PC-MRI system. This

hybrid system can potentially identify possible disease conditions in the LV through

analyzed vorticity, kinetic energy, hemodynamics, pressure, and shear stress. Approxi-

mately 30% of all heart attacks are fatal [13]. The availability of such a system can

avoid sudden heart attacks and save more lives in advance. Similar to Saber et al. [10],

this study uses CFD simulation to construct an accurate model representation of the

heart flow within the cardiac cycle and the resulting vortex dynamics in the LV. How-

ever, unlike Saber et al. [10], the current construction of the heart model did not

directly use MRI images to obtain the geometrical data due to the difficulty of three-

dimensional motions and the lack of information about the fiber connection. We initi-

alized the geometry and fiber characteristics based on the approach of Mcqueen and

Peskin [7]. To achieve enhanced accuracy, we take advantage of the IBM code

described by Mcqueen and Peskin [14] rather than a commercial software. The IBM is

more suitable for large movement simulation because it does not suffer from grid
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quality deterioration, commonly seen in structured grids. The current study simulates

the entire heart based on the anatomy and mechanical properties of heart muscle

fibers, extensively documented by physiologists. The geometry of the heart changes

with time according to the FSI between fluids and muscles; hence, it is more accurate

to simulate the changing geometry of the heart.

As a first step, we concentrate on verifying the results of CMS with clinical data in

this paper. These results and comparisons are essential for the subsequent model

improvements and practical implications. The next section describes the methodology

of the cardiovascular modelling system, followed by a detailed description of the 4-D

PC-MRI system and its capabilities. The numerical method developed by Mcqueen and

Peskin [14] will be explained briefly. Our results involved hemodynamic comparison,

vortex and kinetic energy analysis which show some agreements with the compared

cases. The conclusion summarizes the overall performance and the specific areas

which require further investigations.

Methods
Patient-specific Cardiovascular Modelling System

Developing an accurate CFD based patient-specific cardiovascular modelling-system

involves integrating analyzed data from the 4-D PC-MRI system (hardware) into the

IBM heart model (software). Figure 1a shows the fundamental methodology. The 4-D

PC-MRI system scans healthy volunteers, as well as patients with cardiac problems.

The raw data comprises of images and the hemodynamic velocity of the heart over an

entire cardiac cycle. The 3-D IBM heart model [14] requires initial and boundary con-

ditions for the pressure, which can be obtained from idealized cases or documented

estimations of healthy adults. This information allows us to investigate various scenar-

ios and their effects on the LV of the heart. The quasi-realistic simulation provides

very useful heart flow information for diagnostics, such as visualization, velocity field,

kinetic energy (KE), vorticity, and pressure.

In the CMS, the boundary conditions are specified at five major inflow and outflow

sources, including 1) superior vena cava (SVC); 2) inferior vena cava (IVC); 3) pulmon-

ary vein (PV); 4) pulmonary artery (PA); and 5) aorta, as shown in Figure 1b. These

Figure 1 The proposed Cardiovascular Modeling System (CMS) and sketch of heart diagram. a)
Fundamental methodology of the Computational Fluid Dynamics based, patient-specific CMS. b) Diagram
of the heart with the five key boundary sources (Figure modified from Abdallah [28]).
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five sources dictate how the blood flows in and out of the heart and are crucial. The

SVC and IVC are two large veins in charge of transporting de-oxygenated blood to

the right atrium of the heart. The SVC is formed by the left and right brachiocephalic

veins and blood through the SVC enters the right atrium through the upper right

front of the heart. Similarly, the blood in the IVC enters through the lower right,

backside of the heart. The PV (four in reality, but simplified to only one in the 3-D

heart model) carries oxygenated blood from the lungs to the left atrium (LA) of the

heart and delivers de-oxygenated blood from the heart to the lungs. The aorta, the lar-

gest blood vessel in the body originating from the LV of the heart, transports oxyge-

nated blood to all parts of the body. Previous research [9,15,16] shows that the filling

dynamics of the LV contain vital health information of the heart. This study therefore

concentrates on the flow dynamics of the LV and the PV, which directly affects the

blood entering the LV.

The CFD heart model aids in close investigation of the entire process within the LV

to examine the possibility of observing disease-related dysfunctions in the dynamics of

transmitral blood flow during early LV diastole. Combining the non-invasive 4-D PC-

MRI information with the quasi-realistic heart model provides a unique opportunity to

evaluate cardiovascular hemodynamic before complete heart failure. Here, we empha-

size more on the initial comparison between the modelled flow dynamics in LV with

the clinical data for a healthy subject to obtain a better understanding of the current

technique.

4-D PC-MRI System

The latest 4-D time-resolved PC-MRI, located at the National Taiwan University Hos-

pital, provides enhanced and more realistic physiological information for the CFD flow

simulation. This system acquired images using a 3T MR imaging system (Magnetom

Trio; Siemens, Erlangen, Germany, gradient performance: 40 mT/m in 200 s) with

standard body coil [17], which allows the reconstruction of 3-D images of the heart

over a cardiac cycle. However, getting clear and accurate images is not straightforward

due to various problems, such as insufficient respiration control, artifact generation,

and limited signal-to-noise ratio [12]. Post-processing is required to identify, check,

and extract relevant heart flow fields over the cardiac cycle (19 contiguous volume

image frames). We obtained images at intervals of approximately 45 milliseconds. The

field of view (FOV) is 307 × 230 mm2 with matrix = 256 × 192 and the section thick-

ness is 6 mm. This forms the volume images at 256 × 192 × 8 (x, y, z), which approxi-

mates to an actual size of 307 × 230 × 48 mm3. Each “z=” plot below represents the

orthogonal coordinate section of the xy plane. Only 8 slices in the z direction are used

due to the constraint of the PC-MRI system. Hence, the images can only provide quali-

tative flow dynamics in patients and volunteers. We anticipate the CMS shall provide

us better details with a reasonable comparison with the PC-MRI system.

The test subject of the 4-D PC-MRI system for this initial test is a healthy 35 year-

old female volunteer with no underlying disease. The study was approved by the Insti-

tution Review Board (IRB) at the hospital. MRI images over an entire heart cycle were

taken. A snapshot image taken at T = 0.2 in Figure 2, corresponds to the diastolic

phase (1T is equivalent to a whole heartbeat), and shows one of the heart image slices

at a resolution of 256 × 192. The colored arrows indicate the velocity vectors of the
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blood flow. A high concentration of vectors in the circled region corresponds to the

diastolic phase when large amounts of blood enter the LV. Note that, in the current

paper, the results obtained from 4-D PC-MRI system are only used for comparison

and verification purpose, however, its output can be feed in to the CMS as shown by

the blue arrow in Figure 1a. The results will be shown in a subsequent paper.

3-D Cardiovascular Model System (CMS) and Numerical Method

The IBM algorithm is based on Lai and Peskin [18], and verified using the time peri-

odic vortex street behind a circular cylinder. The 3-D CMS is based on the IBM model

developed by Mcqueen and Peskin [14] and is more adequate for modelling elastic and

contractile fibers of the heart compared to other variations of the IBM [19,20]. The

governing equations are based on the 3-D incompressible Navier-Stokes equations

with immersed boundary forcing given by:

ρ

(
∂u
∂t

+ u · ∇u
)

+ ∇p = μ�u + f, (1)

∇ · u = 0, (2)

f(x, t) =
∫ Lb

0
F(s, t)δ(x − X(s, t))ds, (3)

∂X(s, t)
∂t

= u(X(s, t), t) =
∫

�

u(x, t)δ(x − X(s, t))dx, (4)

F(s, t) = S(X(·, t), t). (5)

In this case, x = (x, y, z), u(x, t) = (u(x, t), v(x, t), w(x, t)), is the fluid velocity and p(x,

t) is the fluid pressure. μ and r represent the fluid viscosity and density respectively.

The force density (with respect to dx = dxdydz) acting on the fluid is f(x, t) = (fx(x, t),

fy(x, t), fz(x, t)). The s tracks a material point of the immersed boundary and the

boundary force density (with respect to ds) is F(s, t) = (Fx(s, t), Fy(s, t), Fz(s, t)). Equa-

tions (3) and (4) estimate the interaction between the immersed boundary and the

Figure 2 One of the heart image slices using the 4-D Phase contrast (PC)-MRI system at 256 × 192
resolution. The color indicates its velocity magnitude.
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fluid. Equation (5) represents the boundary force resulting from the boundary config-

uration at time t, where the function S satisfies a generalized Hooke’s law if the bound-

ary is elastic.

Two sets of grids, fixed and moving, are adopted in the CMS. The fixed grid repre-

sents the Cartesian grid x, y, z which covers the entire fluid domain. The moving grid

represents the boundary or fibers of the heart. At each time step, the force acting at

each point on the fiber is calculated using Equation (5). These fibers exert force onto

the fluid, represented by the Cartesian fixed grid, and the force on the fluid is calcu-

lated using Equation (3). The resulting velocity at time step (n+1/2) is then obtained

by solving Equations (1) and (2) using the fractional step method, which solves the

momentum and the pressure Poisson equations. With this, one can return to interpo-

late the velocity of the fiber from its surrounding velocity of the fluid. The fibers then

move to their new positions at t = n+1/2 based on their velocities. With the known

velocities and positions of the fibers at t = n+1/2, the solution process is repeated, but

now they are used to take a full time step from t = n to n+1. This results in a time-

centered or Crank-Nicolson scheme which has “formal” second-order accuracy [18].

The whole process is sketched in Figure 3.

Constructing the 3-D CMS includes a few steps. The most fundamental component

is the boundary points, which are joined together to form fibers. The fibers with the

same number of points are clustered together as a group, while a bunch is made up of

groups. The combined bunches form the heart. Hence, the entire heart model is made

up of about 4,000 fibers consisting of about 600,000 boundary points. The fiber con-

nections are based on studies of the hearts of dog and hogs which were bathed in a

substance that dissolves the connective tissue between the muscle fibers. More details

about the construction of the heart can be found in Mcqueen and Peskin [14]. Fiber

elasticity is nonlinear and time dependent and possesses different values at various

areas because it performs diverse functions. Local fiber strain determines the fiber ten-

sion, and this stress-strain relationship drives the contraction and relaxation of the car-

diac muscle. The characteristics of fiber properties can be found in Kovacs et al. [21].

Hence, this can be defined as a fully FSI study.

Figure 3 a) The flowchart and b) computational meshes of the 3-D CMS based on the immersed
boundary method.
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The fixed Cartesian grid uses uniform 128 × 128 × 128 grid points with a domain

size of approximately 17 × 17 × 17 cm cube. The width of 17 cm is based on a domain

of 64 meshwidths. A mitral ring radius of 5.85 meshwidths represents the 10 cm cir-

cumference of the human mitral ring. A grid refinement study was carried out by run-

ning the simulation partially up to T = 0.2 with a grid size of 256 × 256 × 256 grid

points. Qualitative visualization shows the similarity between both heart expansion and

contraction of the 1283 and 2563 grids at the early stage. Figure 4 shows the vorticity

plots of a slice of the simulated heart for the two different grid resolutions at T = 0.2,

which corresponds to the filling period. This filling period will be explained further in

the later sections. The color contours are similar (a pair of vortices) but their distribu-

tion differs slightly, as expected. This could be attributed to the slight difference at

which blood enters the LV.

Assuming a peak physiological Reynolds number (Re) of 6000, the current number of

grid points is clearly insufficient to resolve the boundary layer in the simulation. At Re

≈ 6000, turbulent flow is expected. As a preliminary study, the current simulation

assumes a laminar flow and does not use any turbulence model. Note that the main

purpose of this study is not to create an exact model of the heart, which will require

very high computational resources to resolve the detailed forces and FSI. This is also

due to the fact that the immersed boundary method of Peskin [18] is not a sharp inter-

face method. Therefore, it will not be able to give a sharp representation of the heart

[22]. On the other hand, it is able to better represent the elastic immersed boundary.

Hence our objective in this paper is to adequately capture a qualitative picture of the

effects of the heart model wall and the FSI.

Figure 4 Vorticity plot comparison at T = 0.2 for a) n = 128 and b) n = 256 grids.
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A new single heartbeat, together with the initial transient, requires 57,344 time steps.

An initial transient period is required because the simulation may not run successfully

if the LV is empty. The LV must be filled with sufficient blood before conducting the

actual cardiac cycle. This filling period runs from t = 0 to 0.34 s. Therefore, our analy-

sis of the cardiac cycle starts from t = 0.34 s to t = 1.14 s (the complete cardiac cycle

T lasts 0.8 s). The time t = 0.34 s corresponds to the onset of the diastolic phase.

Hereafter, the time is normalized by the complete cardiac cycle (T = 1.0) for simplicity.

Simulation of a single heartbeat takes approximately 42 hours on a Linux cluster

comprising the Intel Xeon Woodcrest Quad-Core 5345 2.33GHz processors with

openmp parallelization enabled. Subsequent heartbeats require 32,768 time steps. With

an assumed heartbeat lasting 0.8 s and time step 2.44 × 10-5 s, the current simulation

obtains results from the first heartbeat after the initial transient.

As mentioned earlier, the boundary condition for the CMS is specified at five loca-

tions of the heart. Cyclic pressure boundary conditions are specified. Similar to Mcqu-

een and Peskin [14], this work imposed a fixed reservoir pressure boundary condition

(RPBC) throughout the cardiac cycle comparable to the boundary condition of Saber

et al. [10]. Table 1 shows the RPBC at various sources of the heart. The density and

kinematic viscosity of the fluid are 1.0 g/cm3 and 0.03125 cm2/s[23]. Although the sol-

ver we used here is the same as that in Kovacs et al. [21], we analyzed the results by

comparing against clinical data in terms of hemodynamic, vorticity, and kinetic energy

(KE).

Results
Hemodynamic comparison

Figure 5 shows the PV and aorta RPBC as well as their flow rate variation for one car-

diac cycle. In the simulation, between T = 0.0 and 0.25 (initial LV filling phase also

known as the E-wave [24], marked as the red circle 1 in Figure 5, the inflow rate at

the PV is almost constant where the blood enters the heart. At this instant, the mitral

valve in the simulation also opens, shown by the green circle at the top right hand side

of Figure 5. In the middle of the LV filling phase (just after T = 0.4, red circle 2), the

flow rate decreases, reverses, and then increases again (circle 2, Figure 5). This indi-

cates that some amount of blood is flowing out of the PV, resulting from a higher LA

pressure due to the filled-up blood in LA. This is not surprising because the reservoir

pressure is always constant. With higher LA pressure, backflow occurs and some blood

begins to flow out, resulting in the negative PV flow rate. After T = 0.5, the inflow

resumes briefly, corresponding to the second filling phase, commonly known as the A-

wave [24], which is due to atrial contraction. The earlier backflow lowers the pressure

in the LA and resumes blood flow. However, the PV flow rate decreases again after T

= 0.7. The diastole phase ends and the systole phase begins. During systole, the inflow

decreases to zero and changes to outflow. A stronger outflow is again evident between

T = 0.75 to 1.0 (red circle 3, Figure 5) because of higher pressure in the LA resulting

from earlier inflow of blood.

Table 1 RPBC at different sources of the heart

Sources SVC, IVC PV PA Aorta

Reservoir pressure/mmHg 100 15 5 80

Tay et al. BioMedical Engineering OnLine 2011, 10:52
http://www.biomedical-engineering-online.com/content/10/1/52

Page 9 of 17



Figure 5 shows a constant aorta RPBC 80 mmHg, with no significant difference in

the flow rate of the aorta from T = 0 to 0.65. This is because this period (blue circle 1)

corresponds to the initial filling of blood in the LV. The pressure in the LV is low,

compared to aorta pressure, and hence only a small amount of inflow exists. After T =

0.65, the systole phase begins (blue circle 2). During this period, large amounts of oxy-

genated blood start to flow out through the aorta to other parts of the body. In Figure

6, the magnitude of the flow rate is non-dimensionalized using the stroke volume and

the cardiac cycle T. The stroke volume refers to the difference in the volume of the

LV between the end-diastolic and the end-systole phase. This flow rate is compared

Figure 5 The reservoir pressure boundary condition (RPBC) and flow rate throughout one cardiac
cycle.

Figure 6 Magnitude comparison between the inlet flow rate Q of the LV for CMS and Fortini et al.
[8]throughout one cardiac cycle. E, A and S refer to the E-wave, A-wave and S-wave, respectively.
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against the similar clinical data from Fortini et al. [8], Baccani et al. [24], and Domeni-

chini et al. [25]. Their data are similar except that they are non-dimensionalized differ-

ently. Q represents the flow rate through the mitral during the diastole (0.00-0.75 T,

containing the E- and A-waves), and through the aortic valve during the systole (0.75-

1.00 T, containing the S-wave). The graph of Fortini et al. in Figure 6 is obtained by

combining flow rate from the mitral value and aorta during the diastole and systole

phase. Hence, flow rates at the mitral valve and aorta during the systole and diastole

phase are assumed to be zero. However, in the simulation, there is outflow during the

systole for the PV.

Figure 7 Visualization of the vortices in the LV through different approaches. a) Vorticity contours at
z = 0.56 (along the same plane as PV) and T = 0.13 using the CMS. b) Experimental results of vorticity
fields from Fortini et al. [8]. c) Vorticity contours from the current 4-D PC-MRI system. d) Simplified
evolution of flow through a single axisymmetric opening valve.
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Analysis of vortex dynamics

The vortex dynamics is the most important characteristics in LV. Figure 7a shows the 2-

D vorticity of CMS at T = 0.13, near the early diastolic phase. The 2-D vorticity fields (Z

vorticity) are obtained by extracting a slice of the heart along the z direction using:

Vorticity =
dv
dx

− du
dy

(6)

Defining the two edges of the heart as z = 0 and 1, the cross-section of the vorticity con-

tour comes from the location z = 0.56 (Figure 7a). This slice is chosen because it is on the

same plane as the PV and clearly shows the vorticity variation. Negative and positive vor-

tices are shown as blue and red, respectively. The negative vortex is generated on the left

while the positive one is on the right. Further comparison with the experimental and clini-

cal data is presented in Figure 7b-c, which show the experimental results of vorticity fields

from Fortini et al. [8] and the vorticity contours from the current 4-D PC-MRI system.

Kinetic energy

The variation of kinetic energy (KE) of blood flow in the LV indicates the work of the

pumping heart. Figure 8 shows the normalized maximum KE, represented by the mag-

nitude of
√

u2 + v2 + w2, from the CMS simulation and the total KE from the 4-D PC-

MRI data for one cardiac cycle in the LV. A particular plane at z = 0.56 is selected in

the CMS simulation because it clearly captures the variation of the KE. The figure

shows three peaks of the maximum KE at T = 0.13, 0.44 and 0.83 (three black circles

1-3). For the comparison, four different sections out of eight from the 4-D PC-MRI

are also chosen to calculate the total KE. Figure 9 shows the actual locations where the

maximum KE occurs, which corresponds to the vorticity and energy region. The

Figure 8 The comparison of Kinetic Energy (KE) between the 4-D PC-MRI system and CMS.
Normalized total KE at different slices and maximum KE at slice z = 0.56, obtained from the 4-D PC-MRI
system and CMS, respectively.

Tay et al. BioMedical Engineering OnLine 2011, 10:52
http://www.biomedical-engineering-online.com/content/10/1/52

Page 12 of 17



markers show three distinct peaks. The KE values below 3.0 × 10-7 joules are not

shown. We also use colors to indicate the KE level.

Discussion
Hemodynamic comparison

We discussed the flow rates through the PV and aorta in the simulation (Figure 5).

The large magnitude shown by the red circle 3 (-50 cm3/s) during the S-wave

seems plausible. The magnitude should be similar to that of the earlier outflow

(around T = 0.45) because the mitral valve is closed at this time, as shown in the

bottom left of Figure 5 (small green circle). Hence, there is no additional blood tra-

velling through the mitral valve to the LA and out to the PV. In an actual heart,

the mitral valve opens to allow blood to flow into the LV during diastole, as shown

by the green circle at the top right hand side of Figure 5. Under normal conditions,

the mitral valve should prevent backflow during the systolic phase. Although the

mitral valve seems to be nearly closed, the 3-D heart model is unable to prevent

backflow during the systole phase (also known as mitral valve dysfunction). It is

natural that the modelled heart cannot form a fully closed value, which is con-

structed based on points, fibres, groups and brunches (unlike the usual structured

or unstructured grid model). The opening and closing of the valve is due to FSI.

The resultant force on the valve may not be sufficient to exactly close it unless a

specific constraint is imposed. Lastly, Kovacs [21] mentions that the layout of the

fibres and fibre points may need to be more refined in some regions than others to

prevent leakage. This is due to the stretching of the regions. Further analysis of the

similarity to corresponding heart problems is helpful. In some diseased conditions

such as LV dilatation, mitral valve dysfunction, or pulmonary arterial hypertension,

large in/out flow variations are observed clinically, consistent with these idealized

constant RPBC.

The comparison in Figure 6 shows that the magnitude of PV flow rate is generally

twice as high as that of Fortini et al. [8]. The variation is not as pronounced in the PV

flow rate between T = 0 and 0.3; it decreases slowly because of the prolonged filling

Figure 9 The KE of the markers in the LV for CMS at different times showing the three peaks. KE
values below 3.0 × 10-7 joules are not shown. The color indicates the level of its KE.
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phase to ensure a balanced momentum. For the aorta, the comparison with flow data

from Fortini et al. [8] shows similar outflow during the systolic phase. The high out-

flow at the aorta occurs at a similar time (T = 0.82), indicating that the CMS simulates

various phases of the cardiac cycle. However, the aorta flow rate is much higher than

that of Fortini et al. [8] (-5.0 compared to -1.0 in Figure 6). The inflow during diastole

in their experiment is similar to the outflow during systole. The same occurs in the

CMS simulation, although its magnitude is much larger and will most likely conserve

the prolonged filled mass flow rate numerically. Further investigation is still required

to verify this speculation.

Analysis of vortex dynamic

This section discusses the evolution of vorticity in the LV throughout the entire car-

diac cycle and emphasizes vortex dynamics in the LV of the heart during diastole. As

mentioned by Domenichini et al. [9], many researches [15,16] confirm that the vortices

generated in the LV are significant in heart functionality. Pierrakos and Vlachos [26]

discussed vortex formation during the diastole period and showed that fluid transport

is more efficient by vortex ring formation, compared to a steady, straight jet of fluid.

The formation of the vortices and their respective locations can be explained using

Figure 7d. The blood flows into the LV through the mitral valve opening. As the blood

enters the LV, the larger surrounding space allows it to “spread” after traveling a short

distance. Because the LV is an enclosed space, the blood interacts with the wall and is

constrained to “roll back” giving the vortices shown. In this simplified illustration of an

axisymmetric valve, the valve in the modeled heart is non-axisymmetric. Numerous

experiments also show the pair of vortices. Fortini et al. [8] modeled the LV using a

conical sack made of silicone rubber. Their results showed two vortices of opposite

signs, similar to the simulation. The MRI image obtained from the 4-D PC-MRI sys-

tem also shows the pair of vortices. Our simulation results tally well with the two

experimental results (Figure 7b and 7c). However, Fortini et al. [8] also argued that, as

the diastolic phase proceeds, the left negatively signed vortex (blue) would grow stron-

ger than the right positively signed one. They suspected that the right (red) vortex

interacts viscously with the wall of the LV, slows down, and diminishes in size. The

same process does not result in the left (blue) vortex and hence it is able to grow lar-

ger. Unfortunately, this is not evident in the current simulation. We suspect the cur-

rent simulation may not be able to accurately simulate the viscous interaction of the

vortex with the wall boundary, which may require a finer mesh.

Kinetic energy

Figure 8 shows a large volume of blood flow into the LV through the PV in the first

two timings (T = 0.13 and 0.44). This generates vortices which help to minimize

energy dissipation during flow transport [27]. The first peak corresponds to a high

blood inflow into the LV during the initial diastole (also known as E-wave) while the

second lower peak (A-wave) corresponds to atrial contraction. Because a higher flow

rate is akin to higher kinetic energy, one can also compare with the time varying flow

rate (Figure 6). These two peaks are also observed in the data of Fortini et al [8]. In

this case, the peaks (E and A) occurred at approximately T = 0.16 and 0.62 (interval of

0.46 T). Hence, its time interval is also slightly longer. This may result from a number
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of possibilities. The clinical data may not be universal because of variations in patients,

timing, and other factors. From the simulation, the imposed boundary conditions influ-

ence the variation in KE as well. The third peak in Figure 8 corresponds to the large

outflow of oxygenated blood through the aorta valve during the systolic period. This is

also captured in Figure 6, which is approximately T = 0.83.

The normalized total KE of the heart using the 4-D PC-MRI system is also compared

in Figure 8. Due to the limitation of the system, it is not possible to obtain maximum

KE only in the LV. Hence, a direct comparison between the 4-D PC-MRI and CMS

results is impractical in Figure 8. Nevertheless, the qualitative information can be

extracted from the total KE based on a variety of horizontal sections. The z = 5 plane

of the 4-D PC-MRI image (the slice at approximately the center of the heart in the z-

plane) is similar in position to the plane shown by the CMS result in Figure 8 (z =

0.56). There are also three peaks, with the second peak being less obvious (T = 0.65)

in the 4-D PC-MRI graph. These correspond to the initial diastolic, atrial contraction,

and systolic phases, demonstrating that the CMS is able to show different peaks rea-

sonably. The timings for the first and third peaks are similar between the two results.

However, the second peak occurs at an earlier time of T = 0.44 for the CMS result.

More investigations are required due to several uncertainties in either data or simula-

tion (e.g. various categories of volunteers such as male and female, age, and the bound-

ary conditions imposed).

Conclusions
The current study implemented the CMS based on the code by Mcqueen and Peskin

[14]. We compared and evaluated the results in terms of hemodynamic, vorticity visua-

lization, and kinetic energy analysis. The simulation properly captures the peaks during

the E-, A-, and S-waves. However, the actual magnitudes do not tally well. Outflow is

detected at the PV during the filling phase. This occurs despite the closure of the

mitral valve. During systole, outflow occurs at the aorta due to oxygenated blood rush-

ing out to different parts of the body.

Modeled vorticity fields show similar results compared to the experiments conducted

by Fortini et al. [8]. Both simulation and experimental results show two oppositely

signed vortices in the LV. However, the simulation does not capture the difference in

size of the left and right vortices. In terms of kinetic energy, the simulation results

show a similar number of peaks (three) as those found in the volunteer from the 4D

PC-MRI system. The result also correctly reflects the relative heights of the first two

peaks (first higher than the second) compared with the clinical data. Some differences

in the timing of the peaks still exist, although it is still uncertain due to the variation

in patients.

The results show that using a simple RPBC is able to capture some of the essential

variations found in the clinical data in some basic analysis, which encourages further

aid of physician’s diagnostics using the CMS approach. These include the peaks cap-

tured in Figure 6/and8, and the vortex pair in Figure 7. Some discrepancies between

the simulation and clinical data are still present, such as the occurrence of backflow

even when the mitral valve is closed, difference in the magnitude of aorta flow rate

(Figure 6), and the timing difference in the second peak during the comparison of the

KE. Further detailed investigations are required to determine the actual causes behind
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the discrepancies. More sensitivity tests should be performed further in terms of the

RPBC, boundary conditions and resolution dependence of CMS and the characteristics

of vortex structure from the 4D PC-MRI system in order to complete the realistic

application of the integrated system.

The presented approach establishes a first-step framework of a practical patient-spe-

cific CMS, which comprises a 3-D CFD model to simulate the heart and the 4-D PC-

MRI system. At this stage, the 4-D PC-MRI system is used for verification purpose

rather than input. This study brings us closer to our goal of developing a practical

patient-specific CMS, which will be pursued next. In practice, conducting a patient-

specific CMS in advance can accurately predict and visualize the blood flow in the

heart, thus providing a general understanding and adequate evaluation of the heart

flow dynamics noninvasively. Since the 3-D modelling component of this patient-speci-

fic CMS is still computationally expensive, this system can be used ideally for the pur-

pose of pre-operation evaluation or surgical planning. It can solve the common

echocardiographic windows problem for many patients. Most important of all, the vor-

tex dynamic and other complicated flow dynamics can be comprehensively revealed

and provided to the physicians for necessary treatment. This can greatly simplify the

diagnostic process compared to using MRI, echocardiography or other techniques,

which have difficulties as mentioned earlier.
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