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ABSTRACT

The Robert–Asselin–Williams (RAW) filtered leapfrog scheme is implemented and tested in the Taiwan

multiscale community oceanmodel (TIMCOM). The characteristics of theRAWfilter are carefully examined

through two benchmark tests (the classical model problem-oscillation equation with further consideration of

the dissipation effect, and the 1D linearized shallow-water equations). Particularly, the effect of the RAW

filter upon the 2Dx wave instability due to spatial truncation errors is addressed. TIMCOM is then applied to

simulate the coastally trapped internal Kelvin waves and global ocean circulations, showing the practical

improvement over the Robert–Asselin (RA) filter in the short- and long-term model integrations. The large

mean differences in somemajor current systems suggest the potential impacts on the oceanic instability where

the numerical dissipation may interfere with the physical one. The characteristic analysis and model results

here indicate the significant advantage of theRAW-filtered leapfrog time-stepping scheme for accurate ocean

modeling.

1. Introduction

Accurate and efficient global oceanmodeling plays an

important role in the understanding of climate dynamics

and future projections of climate change. Oceanic cir-

culation driven by wind forcing and density gradients

(attributed by thermohaline differences) can redistri-

bute solar energy and affect the global climate system

(Gill 1982). Particularly, the thermohaline circulation,

which consists of surface and deep-water currents, may

possibly trigger severe climate change events (Wood

et al. 1999; Solomon et al. 2007). To complete more re-

alistic climate modeling, accurate simulation of global

ocean circulation is essential, in addition to the satellite

remotely sensed data and in situ measurements.

The time-stepping schemes used in general circulation

models are very critical to resolve transient phenomenon.

During the past few decades, continuous efforts have

been devoted to developing various explicit/implicit/it-

erative time-stepping methods from a low to a higher

order of accuracy for the compromise between realistic

simulation and computational cost (e.g., Mesinger and

Arakawa 1976; Pfeffer et al. 1992; Teixeira et al. 2007).

The readers can further refer to Durran (1991) for a

thorough review of common approaches such as the

Matsuno scheme (Euler-backward iteration), the leap-

frog scheme, the Adams–Bashforth family of schemes,

and the Runge–Kutta types. Compared to more accurate

alternatives (Durran 1991; Kar 2006), the (filtered)

leapfrog time-stepping scheme (Asselin 1972) has the
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advantages of low computational cost, low run-time

storage, and ease of implementation.As a consequence, it

has prevailed over the years in the communities of oce-

anic and atmospheric sciences [e.g., the Modular Ocean

Model (MOM) of the Geophysical Fluid Dynamics

Laboratory (GFDL), the Parallel Ocean Program of Los

Alamos ClimateOceanmodel, theNucleus for European

Modeling of the Ocean (NEMO), the Community At-

mosphere Model (CAM) of the National Center for At-

mosphere Research (NCAR), and many others].

The unfiltered leapfrog scheme is commonly not used

in practice because of its severe time-splitting instability

in many nonlinear cases (i.e., a spurious oscillation asso-

ciated with the undamped computational mode; Asselin

1972). Generally, three types of methods have been

proposed to control these effects. The first approach is

to periodically reinitialize the leapfrog solution using a

two-time-level method in one single step (e.g., applying

a single Matsuno step after every 11 leapfrog steps;

Pfeffer et al. 1992). However, the computational mode is

not fully eliminated and may become unstable for longer

integrations. Second, coupling with other second-order

approaches per time step [e.g., the leapfrog-trapezoidal

(Kurihara 1965) or the leapfrog–Adams–Bashforth

(Magazenkov 1980) scheme] yields effective suppression

of the computational mode, but leads to a costly iterative

process. Also, major problems for fast modes remain,

such as the inertia–gravity waves that are involved in

geostrophic adjustment dynamics. The last strategy at

almost no additional computational cost is to utilize a

time filter in the time-advancing procedure [e.g., the

Robert–Asselin (RA) filtered leapfrog scheme (Asselin

1972) or its special case, the weighted filtered leapfrog-

trapezoidal scheme (Dietrich and Wormeck 1985;

Roache and Dietrich 1988)]. Such an effective RA fil-

tering approach is commonly used nowadays. However,

two major problems remain: (i) the damping of the

physical mode in the solutions, and (ii) the degradation

of the formal accuracy to first order.

Williams (2009) recently proposed a simple but useful

modification of the RA filter, referred to as the Robert–

Asselin–Williams (RAW) filter. Using the RAW filter,

we can effectively suppress the spurious computational

mode in the original leapfrog scheme with a (nearly)

conserved mean state, achieving (almost) third-order

accuracy for wave amplitude errors while maintaining

second-order phase accuracy. In Williams (2009), the

basic behavior of the RAW filter was analyzed and

demonstrated using the oscillation equation (Durran

1991). It was further implemented and tested in the

Simplified Parameterizations, Primitive Equation Dy-

namics (SPEEDY) atmospheric general circulation

model (Molteni 2003) recently, revealing almost identical

monthly climatology and significant improvement in the

5-day weather forecasts without the need of reparame-

terization (Amezcua et al. 2011).

In this paper, the RAW-filtered leapfrog time-stepping

scheme is evaluated from several aspects and applied

to a recently developed oceanic general circulation

model, the Taiwan multiscale community ocean model

(TIMCOM; Young et al. 2012), which will further serve

as a key component in an earth system modeling

framework. We first examine the characteristics of the

RAW filter using the classical model problem (i.e., os-

cillation equation with further consideration of the dis-

sipation effect) and the 1D linearized shallow-water

equations. The impacts of RAW filter on computational

2Dx wave instability due to spatial truncation errors are

further studied. The analysis also suggests appropri-

ate filtering parameters and time step (determined by

Courant number) for accurate ocean general circula-

tion modeling. We then apply TIMCOM to simulate

internal Kelvin waves (Beletsky et al. 1997) and

global oceanic circulations (Tseng and Chien 2011),

showing the practical improvement over the RA filter

in the short- and long-term model integrations. Sec-

tion 2 analyzes the key characteristics of the RAW

filter. Section 3 contains a brief description of TIMCOM.

Section 4 presents themodel results and discussion. A short

summary is given in section 5.

2. Characteristics of the third-order RAW-filtered
leapfrog scheme

The RAW-filtered leapfrog scheme was proposed to

resolve the time-splitting issue and provide some fea-

tures of third-order accuracy in amplitude (Williams

2009). Compared with the original RA filter, the key

idea is to conserve the mean state of variables aver-

aged over three successive time levels in order to

minimize the numerical damping of the physical mode

while reducing the curvature to remove spurious os-

cillation (i.e., computational mode). The RAW-filtered

leapfrog scheme implements the simple leapfrog

method for du/dt5 f (u) using filtered values in both

backward/centered time levels that are updated with

the smoothing displacements ad and (1 2 a)d when

marching time from t5 t to t5 t1 Dt. It can be written

as follows:

un115 un21 1 2Dt3 f (un ) , (1)

un 5un1ad5

2
4un 1a

y

2
(un212 2un1 un11)

3
5 , (2)
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un115 un11 2 (12a)d

5

2
4un112 (12a)

y

2
(un212 2un1 un11)

3
5 , (3)

where the superscripts n2 1, n, and n1 1 represent the

backward/centered/forward time levels used in the

leapfrog scheme and Dt is the time step; the parameter y

determines the smoothing displacement and is usually

chosen to be O(0.01–0.3) to eliminate the time splitting

error without losing accuracy (Asselin 1972; Durran

1991; Kantha and Clayson 2000); the other parameter a,

bounded between 0 and 1, controls the relative contri-

butions between the two time levels. It is clear that the

three stages, Eqs. (1)–(3), in the scheme yield a recursive

procedure (seeWilliams 2009 for details). The variable u

is a provisional value obtained by Eq. (1) during the

current time step. The single overbar denotes another

singly filtered provisional value updated by Eq. (3)

during the current time. The double overbar denotes the

doubly filtered definitive value updated by Eq. (2) dur-

ing the next time step. In the family of the RAW filters,

the case y 5 0 turns to the pure leapfrog scheme so that

the variables in Eqs. (2)–(3) are directly updated without

additional correction. The case a 5 1 yields the tradi-

tional RA filter. The special case of a 5 0.5 maintaining

the three-time-level mean state can greatly improve the

amplitude error, but suffers from the issue of uncon-

ditional instability (see the detailed analysis below).

Here, we examine the numerical characteristics of the

RAW filter and its spatial dependency, which is essential

before further implementation into any oceanic (or at-

mospheric) general circulation models.

a. Classical model problem-oscillation equation

Consider the classical benchmark test in numerical

analysis: du/dt5 lu, where the complex constant l 5
lR 1 ilI determines the amplification (lR . 0)/damping

(lR , 0) and frequency (arbitrary lI) of the oscillation

(Durran 1991). Discretizing the above equation by the

RAW-filtered leapfrog scheme in Eqs. (1)–(3) gives the

amplification factors for physical (A1) and computa-

tional (A2) modes:

A65
un11

un
5 c11 c2(lDt)

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 c1)

21 2(12 c1)(12 c2)(lDt)1 (c2lDt)
2

q
,

(4)

where c1 5 y/2 and c2 5 12 (12a)(y/2).

Figure 1 shows the stability analysis in a complex

plane for the cases of y5 0.1, 0.2, and 0.5, and a5 0, 0.5,

and 1. The stable region (i.e., bounded by jA6j# 1)

expands/shifts with increasing y and reducing a, similar

to the left column in Fig. 3 of Durran andBlossey (2012).

We also compare the numerical amplification factors

(ranging from 0.9 to 1). For the physical mode A1, the

amplification factors decrease along the negative real

axis (i.e., reducing the real part of lDt). The concave

(a. 0.5) and convex (a# 0.5) curved contours indicate

numerical damping and amplification, respectively, in

comparison with the exact solution Aexact 5 exp(lDt)
that is straight and parallel to the imaginary axis. The

computational mode A- presents an opposite behavior.

In contrast to case a 5 1, a # 0.5 yields a smaller am-

plification factor at a given lDt, providingmore effective

suppression for the spurious oscillation.

The accuracy of the RAW filter is further analyzed

using a pure oscillation solution with period T (or fre-

quency v5 2p/T). We test a range of time steps Dt from
T/20 to T/2560 (or dimensionless time step vDt from
0.314 to 0.002). Figure 2 compares the amplification

factorA1 and relative amplitude error (i.e., «a5 jamodel2
aexactj/aexact vs vDt). Amplification factors asymptoti-

cally approach to the exact solution from both sides as

the time step decreases (see Fig. 2a), indicating the

unconditionally stable (unstable) property for the case

a5 1 (a# 0.5). Note that the case of a5 0.5 converges

rapidly to the unity. The relative amplitude errors in

Figs. 2b–d further reveal the third-order accuracy of a 5
0.5, unlike the rest first-order cases. The relative ampli-

tude error is also sensitive to the smoothing parameter y,

which should be small for better accuracy, consistent

with the earlier studies (e.g., Durran 1991). The other

parameter a has been suggested to be 0.53 (i.e., a

weighted blend of the third-order and first-order filters)

to provide the conditional stability across 0#vDt#ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(a2 0:5)(12 0:5y)

p
5 0:47 (see Fig. 2a) and almost

third-order (strictly first order) amplitude accuracy for

the practical applications (Williams 2009). Note that

a smaller a (e.g., 0.51) constrains the applicable range

of vDt (e.g., only up to 0.27) and a larger one (e.g., 0.55)

increases the computation error (e.g., «a50.555 3.9«a50.53

at vDt 5 0.4). Here, the phase errors are not discussed

because the accuracy remains second order.

In addition, we further analyze the impacts of physical

dissipation, which make the initial amplitude reduce to

a certain degree (e.g., 80%) over several wave periods

(e.g., 10T). Given the wave period with a damping con-

dition, the complex constant of model problem can be

determined [i.e., l 5 lR 1 ilI 5 ln(0.8)/10T 1 i(2p/T)].

Figure 3 presents the amplification factor A1, relative

amplitude error, and time series of the simulations with

a 5 0, 0.5, and 0.53, and 1 based on a fixed y 5 0.1 and

a range of Dt. Overall, the behavior of amplification
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FIG. 1. Stability analysis including numerical amplification factors of physical (A1) and computational modes (A2) for the

family of RAW filter.
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factors (Fig. 3a) is similar to that in Fig. 2a except for

a downward shift due to the dissipation effect (amplitude

damping). As a result, the case of a 5 0.5 becomes con-

ditionally stable (vDt , 0.7) with an underestimated

damping and the rest cases have the same stability char-

acteristics. The relative amplitude errors clearly show

the convergent order for each case. For the cases of first-

order accuracy, a 5 0 and a 5 1 are overlapped but the

suggested a 5 0.53 has an order of magnitude smaller

error. The special case a5 0.5 results in the second-order

overall accuracy due to the combination of the third-

order accuracy in oscillation and the second-order

accuracy in dissipation that can be shown by the

Taylor expansion of Eq. (4): A1(a5 0:5, y, lDt)5 11
lDt11/2(lDt)22 [y/8(12 y/2)](lDt)31O[(lDt)4]. Using

the time step Dt5 T/40 (vDt5 0.16), the result simulated

by a5 0.53 or 0.5 agrees well with the exact solution. The

case of a 5 1 (i.e., the RA filter) overestimates the dis-

sipation (i.e., 60% of the initial amplitude u0 over 10T)

while the case a 5 0 results in totally unrealistic ampli-

fication (Fig. 3c).

b. One-dimensional linearized shallow-water
equations

The one-dimensional linearized shallow-water equa-

tions are then used to diagnose the performance of RAW

filter. Viscosity is excluded to identify numerical damping

(amplification). In the staggered C grids, the leapfrog

finite-difference equations for surface elevation h and

velocity u are

hn11
m 2hn21

m

2Dt
52hi

unm11/22 unm21/2

Dx
, (5)

un11
m11/22 un21

m11/2

2Dt
52g

hn
m112hn

m

Dx
, (6)

where h is the mean water depth and g is gravity. Sub-

stituting the wave-type solutions hn11
m 5hn11

0 exp(ikmDx)
andun11

m11/2 5 un11
0 exp[ik(m1 1/2)Dx], Eqs. (5)–(6) can be

rewritten as

hn11
0 2hn21

0

2Dt
52hiu

n
0

exp(ikDx/2)2 exp(2ikDx/2)

Dx

52ihiu
n
0X , (7)

un11
0 2 un21

0

2Dt
52ghn

0

exp(ikDx/2)2 exp(2ikDx/2)

Dx

52ighn
0X , (8)

where the variables with subscript 0 represent their

amplitudes; k is the wavenumber; and X is sin(kDx/2)/
(Dx/2). Both variables are smoothed using the RAW

FIG. 2. Accuracy analysis including (a) the numerical amplifi-

cation factor of physical mode A1 and (b)–(d) relative amplitude

errors «a for the family of RAW filter (triangles: y 5 0.1, squares:

y 5 0.2, and circles: y 5 0.5).
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filter before marching to the next time step. Using the

eigenvalue analysis similar to Eqs. (8)–(10) in Sun (2010)

and some mathematical manipulations (more details in

Sun 2010), we can derive the repeated amplification fac-

tors for the surface elevation and velocity in a similar

form:

A6 5 c11 c2(6CDT)6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 c1)

21 2(12 c1)(12 c2)(6CDT)1 [c2(6CDT)]2
q

, (9)

FIG. 3. Accuracy analysis for oscillation with dissipation: (a) the numerical amplification

factor of physical mode A1, (b) the relative amplitude errors «a for the family of RAW filter

(3: a5 0, triangles: a5 0.5, squares: a5 0.53, and circles: a5 1), and (c) the associated time

series (black lines: exact solutions, gray dashed lines: a5 0, blue dashed lines: a5 0.53, green

solid lines: a 5 0.5, and red lines: a 5 1).

JANUARY 2014 YOUNG ET AL . 439



where 6C56
ffiffiffiffiffiffi
gh

p
represents the downstream (up-

stream) propagating wave speed, DT 5 iDtX, and

CDT 5 i(CDt/Dx)2 sin(kDx/2) 5 i(vDt/kDx)2 sin(kDx/2).
To further examine the capability of RAW-filtered

leapfrog scheme, we simulate linear long waves (with

wavelength l 5 10 000 km and amplitude a 5 0.001 h)

traveling through a flat bottom (water depth h5 4000m)

over a geophysical-scale distance (e.g., L 5 3l 5
30 000 km). The corresponding wave speedC and period

T are 198m s21 and 14 h, respectively. Given a spatial

resolution Dx 5 l/200 5 50 km (around 0.58), the time

stepDt can be determined by the Courant number Co5
CDt/Dx 5 vDt/kDx. Periodic boundary conditions are

applied. Figure 4 shows the relationship between the

absolute amplitude error (jA1j2 1) andCourant number

Co. If Co, 0.5, the magnitude of error isO(1025) for the

long waves calculated using y 5 0.1 and any chosen a.

With a fixedCo, reducing grid size yields a smallerCDT5
iCo2 sin(kDx/2) and becomes more accurate. Notice that

the 2Dx wave instability due to amplification of spatial

truncation errors can be significantly enhanced by a fac-

tor aroundO(1.3) at Co5 0.5, which is neutral in the pure

leapfrog scheme (Durran 1991; Sun 2010). Figure 4b

shows that, for a smaller Co (e.g., Co , 0.35), the first-

order accurate case of a5 1 can effectively damp out the

noise of 2Dx wave while the rest of the parameters (a #

0.5) can reduce the numerical instability to the order of

1023 in magnitude. Also, the convergent behaviors in the

RA and RAW filters are qualitatively different [i.e., two

branches in the case of a 5 1 with the singularity point

(beyond the lower bond of the axis) at Co5 0.5(12 y/2)

or a smooth transition for the other cases]. This founding

is consistent with Fig. 4 in Williams (2009). Overall, our

analysis further suggests Co# 0.2 should be used for the

practical applications, while the optimal filtering param-

eters a 5 0.53 and y 5 0.1 remain as a result of the

analogy between the Eqs. (9) and (4). Figure 5 shows the

spatial profile of surface elevation and its underlying ve-

locity field at t 5 150T (about 2.5 months). Using the

recommended settings, the simulation (blue dashed lines)

almost converges to the analytical solution with excellent

agreement, while evident numerical damping (15% de-

creasing of the initial amplitude) and apparent 2Dx wave
instability can be found in the cases of a5 1 (red dashed

lines) and a 5 0.5 (green zigzag lines), respectively.

3. TIMCOM model description

The RAW filter is further implemented in an oceanic

general circulation model, TIMCOM (see Young et al.

FIG. 4. Accuracy analysis of the numerical amplification factor A1 with y 5 0.1 for (a) the

incident long wave and (b) the computational 2Dx wave.
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2012). To simulate the motions of an incompressible,

stratified fluid, TIMCOM solves the 3D primitive equa-

tions with the Boussinesq and hydrostatic assumptions in

the Cartesian or spherical coordinate (l, f, z, t):

$3 � u5 0, (10)

ut 1$3 � (uu)2 (f 1 u tanf/R)y

52pl/(r0R cosf)1$2 �Am$2u1 (Kmuz)z , (11)

yt 1$3 � (yu)1 (f 1 u tanf/R)u

52pf/(r0R)1$2 �Am$2y1 (Kmyz)z , (12)

pz52rg , (13)

Tt 1$3 � (Tu)5$2 �Ah$2T1 (KhTz)z , (14)

St 1$3 � (Su)5$2 �Ah$2S1 (KhSz)z , (15)

where u 5 (u, y, w) is the velocity vector; p 5 ps 1 pb is

the total pressure consisting of the surface pressure ps
and baroclinic pressure pb 5 g

Ð 0
z r dz; r (r0) is the in situ

(reference) density; T and S are potential temperature

and salinity, respectively; f is the Coriolis parameter; g is

the gravitational acceleration; Am, Ah, Km, and Kh are

the eddy viscosity and diffusivity in the horizontal and

vertical planes, respectively; and the divergence operator

is $3 5 $2 1 ()zk 5 (1/R cosf)()li 1 (1/R)()fj 1 ()zk.

Either free-surface or rigid-lid approximation can be

used at the ocean surface for a broad range of appli-

cations (Young et al. 2012).

The governing equations in TIMCOM are now solved

using the third-order RAW-filtered leapfrog scheme

(Williams 2009) and the fourth-order spatial approxi-

mation (Sanderson and Brassington 1998). The compu-

tational domain can be nonuniformly divided into control

volumes along i, j, and k directions. Flow variables are

arranged on a mixed Arakawa A (collocated) and C

(staggered) grid (i.e., the cell-averaged variables ui,j,k, yi,j,k,

Si,j,k, Ti,j,k, pi,j,k, ri,j,k, and the face-averaged velocities

Ui11/2,j,k, Vi,j11/2,k, Wi,j,k11/2). The overall predictor-

corrector procedure (Young et al. 2012), is briefly pre-

sented as follows.

1) Predictor step: To obtain the intermediate velocities,

momentum equations are discretized at cell centers

using centered time-stepping for advection and fourth-

order pressure gradient, and forward time stepping for

diffusion:

~un11
i,j,k 2 un21

i,j,k

2Dt
1$3 � (unun)

52
(pn21

s 1 pnb)l
r0R cosf

1$2 �Am$2u
n21

1 [Km(u
n21)z]z , (16)

where

FIG. 5. Themodeled spatial profiles (lines) and underlying velocity field (lines with arrows) at

t 5 150T (black lines: exact solutions, red dashed lines: a 5 1.0, green solid lines: a 5 0.5, and

blue dashed lines: a 5 0.53).
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$3 � (unun)5
Un

i11/2,j,ku
n
i11/2,j,k 2Un

i21/2,j,ku
n
i21/2,j,k

R cosfDli
1
Vn
i,j11/2,ku

n
i,j11/2,k 2Vn

i,j21/2,ku
n
i,j21/2,k

RDfj

1
Wn

i,j,k11/2u
n
i,j,k11/22Wn

i,j,k21/2u
n
i,j,k21/2

Dzk
,

[p
n21(n)
s(b) ]l 5

[ps(b)]
n21(n)

i22,j,k
2 8[ps(b)]

n21(n)

i21,j,k
1 8[ps(b)]

n21(n)

i11,j,k
2 [ps(b)]

n21(n)

i12,j,k

12Dli
,

$2 �Am$2u
n21 5

Am

R2

 
un21
i11,j,k2 2un21

i,j,k 1 un21
i21,j,k

cos2fDl2i
1

un21
i,j11,k 2 2un21

i,j,k 1 un21
i,j21,k

Df2
j

1 tanf
un21
i,j11,k 2 un21

i,j21,k

2Dfj

!
,

[Km(u
n21)z]z5

1

Dzk

"
(Km)i,j,k

 
un21
i,j,k112 un21

i,j,k

Dzk

!
2 (Km)i,j,k21

 
un21
i,j,k 2 un21

i,j,k21

Dzk

!#
.

Note that pressure is expressed in terms of forward

barotropic surface pressure and centered baroclinic

pressure. Vertical mixing is parameterized based on

Pacanowski and Philander (1981). Coriolis terms are

updated by a trapezoidal approach. The predicted cell-

centered velocities are interpolated to the faces using the

fourth-order approximation (Sanderson and Brassington

1998). Similar procedure is applied to the conservation

equations for final potential temperature and salinity.

2) Corrector step: Forward surface pressure used in

the predictor step requires further correction (i.e.,

centered time stepping) to achieve the final flow

fields:

Un11
i11/2, j,k 5 Ûn11

i11/2, j,k1 dUn11
i11/2,j,k , (17)

Vn11
i, j11/2,k 5 V̂n11

i, j11/2,k1 dVn11
i,j11/2,k , (18)

where

dUn11
i11/2,j,k 52

2Dt

r0R cosf

›

›l
(pns 2 pn21

s )

52
2Dt

r0R cosf

›

›l
(dpns ) , (19)

dVn11
i,j11/2,k52

2Dt

r0R

›

›y
(pns 2 pn21

s )52
2Dt

r0R

›

›y
(dpns ) .

(20)

Surface pressure corrections and corresponding face

velocity adjustments are obtained by imposing the ver-

tically integrated continuity equation:

2Dt

r0R
2 cosf

�
›

›l

�
h

cosf

›dpns
›l

�
1

›

›f

�
h
›dpns
›f

�
cosf

�

5 ŵn11
2h , (21)

where the last term is a convenient shorthand notation

and can be expressed as

ŵn11
2h 5

1

R cosf

�
›

›l

ð0
2h

Ûn11 dz

1
›

›f

ð0
2h

V̂n11 cosf dz

�
. (22)

The resulting Poisson equation is efficiently solved

using the error vector propagation (EVP) method

(Roache 1995) or other iterative solvers [e.g., the bi-

conjugate gradient stabilized method (BiCGSTAB);

see Van der Vorst 1992]. The changes for cell-centered

velocity are then updated (see Young et al. 2012 or

TIMCOM’s user’s manual for details). Once the surface

pressures and horizontal velocities are fully updated,

vertical velocity is determined diagnostically from the

continuity equation, followed by the third-order RAW

filtering Eqs. (2)–(3) for the flow variables in order to

advance in time (Williams 2009).

4. Results and discussion

The new RAW filtering algorithm in TIMCOM is

examined through the simulation of (i) coastal Kelvin

waves that affect the thermocline in large lakes or

oceans (see Wang and Mooers 1976) and (ii) global

oceanic circulation that plays an important role in the
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earth climate system (Gill 1982). The former case shows

significant reduction of numerical truncation error. For

the latter case, an improved structure of some major

current systems in the global simulation indicates a

better prediction of the Atlantic meridional overturning

circulation.

a. Coastal Kelvin waves

We simulate the propagation of small-amplitude

Kelvin waves in an idealized lake (Beletsky et al. 1997)

using TIMCOM. The basin has a circular shape with a

diameter of 100 km. A constant depth of 100m is con-

sidered to exclude the topography effect. The Coriolis

parameter is set to f5 1024 s21 (i.e., the site location at

428N). The initial temperature is 208C at the upper 5-m

mixed layer and linearly decreases to 58C at the bottom

layer across a 10-m thermocline. To generate the in-

ternal Kelvin waves, a southward wind stress increases

linearly from 0 to 0.01Nm22 over 18 h and then re-

mains constant for another 6 h, followed by decreasing

to 0 in the next 5 h.

The computational domain is horizontally discre-

tized by a set of 160 3 160 uniform Cartesian grids

(Dx 5 Dy 5 625m), which is enough to resolve the

nearshore dynamics (Bennett 1977). Twenty-five stretch-

ing layers (1.0/14.0-m thickness at the top/bottom layers)

are employed vertically. The time step Dt is 300 s to

ensure that the Courant number is less than the sug-

gested value [i.e., Co5CDt/Dx5 0.17, 0.20, where Co

is estimated using the inviscid linear wave speed C 5
0.36m s21 (Csanady 1968)]. The simulation is run up to

12 days. The parameters in the RAW filter are y 5 0.1

and a 5 0.53 based on our previous analysis.

Figure 6 shows the coastally trapped response of the

thermocline at t 5 3, 6, 9, and 12 days based on the

simulated surface height and temperature at 10-m depth

using theRAW-filtered leapfrog scheme. Because of the

influence of favorable wind stress and Earth’s rotation,

the surface water flows southwest and piles up at the lake

boundaries, resulting in the downwelling (upwelling) of

warmer (colder) waters along the southwestern (north-

eastern) shorelines. When the wind subsides, the balance

between pressure gradient and Coriolis force causes the

cyclonic progression of tilted surface and upwelling/

downwelling regions. Figure 7 further shows a snapshot

(t 5 12 days) of the surface velocity vectors, underlying

FIG. 6. The modeled (a) surface height and (b) 10-m depth temperature of the coastally trapped internal Kelvin

wave propagating around the lake at 3, 6, 9, and 12 days.
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positive southward velocity across upper part of the

west–east section (i.e., y 5 0km), and the residual of the

mean-state conservation after filtering: «k 5�160
j51j(yn21

80,j,k
1

yn80,j,k 1 yn11
80,j,k)/32 (yn21

80,j,k
1 yn80,j,k 1 yn11

80,j,k)/3j, where the

overbars are used to indicate the filtered flow fields at the

centered (n) and forward (n 1 1) time levels before

advancing to the next time step. It is clear that the re-

sidual of the mean-state conservation is reduced sig-

nificantly using the RAW-filtered leapfrog scheme (see

the right box in Fig. 7). While the conservation states

are relatively different, the RAW (a 5 0.53) and RA

filters (a 5 1.0) yield almost identical patterns in this

dissipation case because the active physical instability

dominates and potentially interferes with the numeri-

cal instability.

b. Global oceanic circulation

TIMCOM (parallel version; see Tseng and Chien

2011) is then applied to simulate global oceanic circu-

lation. The model domain covers the entire globe from

728S to 728N. The depth is derived from the Elevation

Data forAreasGreater than 50 degreesNorth (ETOP05)

bathymetry data. Initial potential temperature and sa-

linity fields are specified using climatology of Levitus and

Boyer (1994). Density, a function of potential tempera-

ture, salinity, and pressure, is calculated by a nonlinear

equation of state (Tseng et al. 2005). The Scatterometer

Climatology of Ocean Winds (SCOW) is used to drive

the circulations (Risien and Chelton 2008). Surface

sources of heat and freshwater are specified by a non-

damping approach (Dietrich et al. 2004a). The simu-

lation is carried out on a 1/48Mercator grid (1440 3 720

horizontal cells) with 50 stretched vertical layers. The

northern and southern closed boundaries are nudged

toward climatology. We take the time step Dt 5 240 s

rather than a much longer value commonly used in

ocean modeling [e.g., Dt 5 3000 s for the GFDL MOM

18 3 1/38 simulation (Pacanowski and Griffies 1999)].

Based on this time step setting, the accumulated ampli-

tude errors are about 0.01% over a long-term inte-

gration and no 2Dx wave instability appears since the

corresponding Courant number is onlyO(0.01) (i.e., Co5
CDt/Dx� 0.20 with the speedC5 3ms21 for the internal

gravity wave or C 5 1.5ms21 for the surface current;

Bryan 1984). The total length of the simulation is up to

20 yr to obtain a quasi-equilibrium ocean state.

We compare the performances between the RAW

and RA filtered leapfrog schemes (i.e., y 5 0.1 and a 5
0.53 or 1.0). Figure 8a shows the RAW (a 5 0.53) fil-

tered leapfrog model results of the last 10-yr-averaged

surface current velocity, presenting clearKuroshio fronts,

Gulf Stream separation, and significant ring genera-

tion associated with shear instability in the Agulhas

Current. General features of major current systems are

well captured and qualitatively similar to the drifter or

satellite observations (e.g., Lumpkin and Pazos 2007)

FIG. 7. A snapshot (t5 12 days) of the modeled surface velocity vectors, underlying positive

southward velocity across the upper part of the west–east section (i.e., y 5 0 km) of internal

Kelvin waves, and the residual of the mean-state conservation after filtering.
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except the common overshoot of the separation loca-

tion in an eddy-permitting model. The surface current

velocity from RA (a5 1.0) filtered leapfrog scheme is

shown in Fig. 8b. Note that no exact solution is avail-

able to quantify amplitude improvement in the model

results. The differences between these two simulations

DV5VRAW2VRA are presented in Fig. 8c. Themixed

positive–negative pattern is similar to the previous

comparison of surface elevation between the accurate

solutions (a 5 0.53) and underestimated crest/trough

(a 5 1.0). Particularly note that a major discrepancy (up

to 30% VRAW) can be found in the western boundary

currents and Antarctic Circumpolar Current (ACC) due

to the Agulhas retroflection. The differences are mainly

associated with the shifted locations of the current sys-

tems and their separation points, which are sensitive to

several potential contributions (Dietrich et al. 2004b;

Chassignet and Marshall 2008). These areas are also well

known to be subjected to several instability mechanisms

and topography, especially the Gulf Stream path. The

Agulhas leakage and its low-frequency variability (Beal

et al. 2011) may contribute to the instability in the

modeled ACC. The overall results indicate that the nu-

merical instability may interfere with the physical one for

some areas in the realistic ocean application.

Figure 9 further examines the last-year model results

and compares the regionally averaged energy spectrum

around the central North Atlantic (the black box in Fig.

8c), where there is slight difference between the RAW

and RA filters. It can be found that the low-frequency

signals associated with the mesoscale motions are quite

similar but the high-frequency small-scale oscillations

(1026–1025Hz, in the range of hours to weeks) obtained

by the RAW-filtered leapfrog scheme are more conser-

vative (or energetic). The difference of the small-scale

fluctuations could result from the path (or unsteadiness)

of the predicted current system (e.g., the Gulf Stream),

which could be significantly influenced by the numerical

dissipation of the time-advancing scheme. These results

are quite similar to the effects of physical dissipa-

tion (Dietrich et al. 2004b). Overall, the most affected

frequency/time scale in our simulations is consistent with

the finding in the SPEEDY atmospheric model (i.e., the

greatly improved 5-day forecasting;Amezcua et al. 2011).

The annual-averaged sea surface height and surface

current velocity of theNorthAtlantic also shows that the

third-order RAW-filtered leapfrog scheme (Fig. 10a)

resolves oceanic fronts (denser contours along the main

pathway) better than the RA-filtered scheme (Fig. 10b).

Improved Gulf Stream structure and ACC may indicate

better prediction of the Atlantic meridional overturning

circulation, which is a key component in the global ocean

climate. The impact of the time-stepping scheme on the

global ocean climate system requires a more careful

evaluation next. Overall, the RAW filtering algorithm is

strongly recommended for the ocean general circulation

FIG. 8. Modeled 10-yr-averaged surface current velocity from

(a) RAW (a 5 0.53) and (b) RA (a 5 1.0) filtered leapfrog

schemes. (c) The difference between RAW and RA results.

FIG. 9. Energy spectrum of the modeled velocity field around the

central North Atlantic [black lines: a 5 0.53, gray lines: a 5 1.0,

solid lines: regional averaged velocity (see Fig. 8c for the region)].
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models based upon the current results. Using the RAW-

filtered leapfrog scheme, accurate representation of the

ocean state (e.g., proper modeling of mass/thermal

transport in boundary current system) can lead to more

realistic regional and global climate study (Kawabe

1995; Yoshinari et al. 2004; Miyazawa et al. 2008; Tseng

et al. 2012).

5. Summary

This study applies the RAW filtering algorithm

(Williams 2009; Amezcua et al. 2011) to a multiscale

oceanic circulation model, TIMCOM (Young et al.

2012). Characteristics of the RAW filter are carefully

examined and analyzed through two benchmark tests:

the model problem-oscillation equation with further con-

sideration of the dissipation effect and one-dimensional

linearized shallow-water equations (Durran 1991; Sun

2010). The issue of computational 2Dx wave instability

is also addressed. The recommended filtering parameters

and time step criteria area5 0.53, y5 0.1, andCo# 0.2 for

accurate ocean modeling in practice. All of these are nec-

essary conditions in order tominimize the truncation errors.

TIMCOM is then applied to simulate the coastally

trapped internal Kelvin waves (Beletsky et al. 1997) and

global circulation patterns (Tseng and Chien 2011),

showing the significant advantage of the RAW filter in

short- and long-term time integration. Particularly, more

energetic velocity field and stronger sea surface height

gradients are maintained in the simulated ocean states

(e.g., the Gulf Stream) using the RAW filter, better pre-

dicting mass/thermal transport in the major current sys-

tem, which is critical to regional and global ocean climate

(Tseng et al. 2012). Based on our analysis and simulation

results, the RAW filter with recommended parameters is

strongly suggested for the simulation of global ocean

circulation when leapfrog-type time advancing is em-

ployed. Currently, coupling TIMCOM within the com-

munity earth system model (CESM) is under way to

achieve more realistic ocean climate modeling. Updated

results will be reported in the near future.
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