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Abstract. In the Community Earth System Model (CESM),
the ocean model is computationally expensive for high-
resolution grids and is often the least scalable component
for high-resolution production experiments. The major bot-
tleneck is that the barotropic solver scales poorly at high core
counts. We design a new barotropic solver to accelerate the
high-resolution ocean simulation. The novel solver adopts a
Chebyshev-type iterative method to reduce the global com-
munication cost in conjunction with an effective block pre-
conditioner to further reduce the iterations. The algorithm
and its computational complexity are theoretically analyzed
and compared with other existing methods. We confirm the
significant reduction of the global communication time with
a competitive convergence rate using a series of idealized
tests. Numerical experiments using the CESM 0.1° global
ocean model show that the proposed approach results in a
factor of 1.7 speed-up over the original method with no loss
of accuracy, achieving 10.5 simulated years per wall-clock
day on 16 875 cores.

1 Introduction

Recent progress in high-resolution global climate models
has demonstrated that models with finer resolution can bet-
ter represent important climate processes to facilitate cli-
mate prediction. Significant improvements can be achieved
in the high-resolution global simulations of tropical instabil-

ity waves (Roberts et al., 2009), El Nifio—Southern Oscilla-
tion (ENSO) (Shaffrey et al., 2009), the Gulf Stream separa-
tion (Chassignet and Marshall, 2008; Kuwano-Yoshida et al.,
2010), the global water cycle (Demory et al., 2014), and other
aspects of the mean climate and variability. Specifically, Gent
et al. (2010) and Wehner et al. (2014) showed that increasing
the atmosphere models’ resolution results in a better mean
climate, more accurate depiction of the tropical storm forma-
tion, and more realistic events of extreme daily precipitation.
Bryan et al. (2010) and Graham (2014) also suggested that
increasing the ocean models’ resolution to the eddy resolv-
ing level helps to capture the positive correlation between sea
surface temperature and surface wind stress and improves the
asymmetry of the ENSO cycle in the simulation.

In the High-Resolution Model Intercomparison Project
(HighResMIP) for the Coupled Model Intercomparison
Project phase 6 (CMIP6), global model resolutions of 25 km
or finer at mid-latitudes are proposed to implement the Tier-
1 and Tier-2 experiments (Eyring et al., 2015). Because all
CMIP6 climate models are required to run for hundreds of
years, tremendous computing resources are needed for high-
resolution production simulations. To run high-resolution cli-
mate models practically, additional algorithm optimization is
required to efficiently utilize the large-scale computing re-
sources.

This work improves the barotropic solver performance in
the ocean model component (Parallel Ocean Model, POP)
of the National Center for Atmospheric Research (NCAR)’s
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fully coupled climate model: the Community Earth System
Model (CESM). The POP solves the three-dimensional prim-
itive equations with hydrostatic and Boussinesq approxima-
tions and splits the time integration into two parts: the baro-
clinic and barotropic modes (Smith et al., 2010). The baro-
clinic mode describes the three-dimensional dynamic and
thermodynamic processes, while the barotropic mode solves
the vertically integrated momentum and continuity equations
in two dimensions.

The barotropic solver is the major bottleneck in the POP
within the high-resolution CESM because it dominates the
total execution time on a large number of cores (Jones et al.,
2005). This results from the implicit calculation of the free-
surface height in the barotropic solver, which scales poorly
at high core counts due to an evident global communication
bottleneck inherent to the algorithm. The implicit solver al-
lows a large time step to efficiently compute the fast grav-
ity wave mode but requires the solution of a large elliptic
system of equations. The conjugate gradient method (CG)
and its variants are popular choices for implicit free-surface
ocean solvers, such as MITgem (Adcroft et al., 2016), FV-
COM (Lai et al., 2010), MOM3 (Pacanowsky and Griffies,
1999), and OPA (Madec et al., 1997). However, the standard
CG method has a heavy global communication overhead in
the existing POP implementation (Worley et al., 2011). The
latest Chronopoulos-Gear (ChronGear) (D’Azevedo et al.,
1999) variant of the CG algorithm is currently used in the
POP to reduce the number of global reductions. A nice
overview of reducing global communication costs for the
CG method can be found in the work of Ghysels and Van-
roose (2014). Recent efforts to improve the performance of
the CG method include a variant that overlaps the global re-
duction with the matrix-vector computation via a pipelined
approach (Ghysels and Vanroose, 2014). However, the im-
provement is still limited when using a very large number of
cores because of the remaining global reduction operations.
For example, when approximately 4000 cores are used in the
POP, the global reduction in the PCG (preconditioned con-
jugate gradient method) and ChronGear takes approximately
74 and 68 % of the entire barotropic mode time, respectively
(Hu et al., 2015). This situation will get worse with more
cores.

Another way to improve the CG method is precondition-
ing, which has been shown to effectively reduce the num-
ber of iterations. The current ChronGear solver in the POP
has benefited by using a simple diagonal preconditioner (Pini
and Gambolati, 1990; Reddy and Kumar, 2013). Some paral-
lelizable methods such as polynomial, approximate-inverse,
multigrid, and block preconditioning have drawn much at-
tention recently. High-order polynomial preconditioning can
reduce iterations as effectively as incomplete LU factoriza-
tion in sequential simulations (Benzi, 2002). However, the
computational overhead for the polynomial preconditioner
typically offsets its superiority to the simple diagonal pre-
conditioner (Meyer et al., 1989; Smith et al., 1992). The
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approximate-inverse preconditioner, although highly paral-
lelizable, requires a linear system that is several times larger
than the original system to be solved (Smith et al., 1992;
Bergamaschi et al., 2007), making it less attractive for the
POP.

Multigrid methods are well-known scalable and efficient
approaches for solving elliptic systems of equations. Recent
works indicated that geometric multigrid is promising in at-
mosphere and ocean modeling (Miiller and Scheichl, 2014;
Matsumura and Hasumi, 2008; Kanarska et al., 2007). How-
ever, geometric multigrid in global ocean models does not
always scale ideally because of the presence of complex to-
pography and non-uniform or anisotropic grids (Fulton et al.,
1986; Stiiben, 2001; Tseng and Ferziger, 2003; Matsumura
and Hasumi, 2008). The current POP, which employs gen-
eral orthogonal grids to avoid the pole singularity, is a typical
example. This leads to an elliptic system with variable co-
efficients defined on an irregular domain with non-uniform
grids. Algebraic multigrid (AMG) is an alternative to geo-
metric multigrid to handle complex topography. However,
the AMG setup in the parallel environment is more expensive
than the iterative solver in climate modeling, which makes it
unfavorable as a preconditioner (Miiller and Scheichl, 2014).

Block preconditioning has been shown to be an effec-
tive parallel preconditioner (Concus et al., 1985; White and
Borja, 2011) and is appealing for the POP because it uses
the block structure of the coefficient matrix that arises from
the discretization of the elliptic equations. This advantage
can further improve solver parallel performance. Some other
algorithmic approaches also attempt to improve the parallel
performance of ocean models. For example, a load-balancing
algorithm based on the space-filling curve was proposed that
not only eliminates land blocks but also reduces the commu-
nication overhead due to the reduced number of processes
(Dennis, 2007; Dennis and Tufo, 2008). Beare and Stevens
(1997) also proposed increasing the number of extra halos
and communication overlaps in the parallel ocean general
circulation. Although these approaches improve the perfor-
mance of ocean models, the global communication bottle-
neck still exists.

To improve the scalability of the POP at high core
counts, we abandon the CG-type approach and design a new
barotropic solver that does not include global communica-
tion in iteration steps. The new barotropic solver, named P-
CSI, uses a classical Stiefel iteration (CSI) method (proposed
originally in Hu et al., 2015) with an efficient block precon-
ditioner based on the error vector propagation (EVP) method
(Roache, 1995). The P-CSI solver is now the default ocean
barotropic solver for the upcoming CESM 2.0 release.

This paper is an extension of the work in Hu et al. (2015),
which was presented in the 27th International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC). Note that the main focus here has shifted to
emphasize the characteristics of the proposed implementa-
tion and the enhanced performance in the high-resolution
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POP. In particular, the characteristics of P-CSI are theoret-
ically analyzed via the associated eigenvalues and their im-
pacts on the spectrum, condition number, and convergence
rate. In addition, we provide a more comprehensive review
of barotropic modes and the existing solvers used in the de-
fault POP (only a simplified discussion is provided in the
SC paper). Finally, because the target audience is now ocean
climate modelers, all figures have been adjusted to address
the major advantages of the proposed method and the overall
performance of the high-resolution POP.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the existing barotropic solver in the POP. Sec-
tion 3 details the design of the P-CSI solver, followed by an
analysis of the computational complexity and convergence
rate of P-CSI in Sect. 4. Section 5 further compares the high-
resolution performance of the existing solvers and the P-CSI
solvers. Finally, conclusions are given in Sect. 6.

2 Barotropic solver background

We briefly describe the governing equations to formally de-
rive the new P-CSI solver in the POP. The primitive momen-
tum and continuity equations are expressed as

1
O L@+ fx U= —Vpt Fu@) + Fe@). ()
ot £0
L(1)=0, 2)

where L(a) = %(ua) + aa—v(va) + %(wa), which is equiv-
alent to the divergence operator when o = 1; x,y, and z
are the horizontal and vertical coordinates; u = [u, v]T is
the horizontal velocity; w is the vertical velocity; f is the
Coriolis parameter; p and pg represent the pressure and the
constant reference water density, respectively; Fg and Fy
are the horizontal and vertical dissipative terms, respectively
(Smith et al., 2010). In particular, we emphasize the two-
dimensional barotropic mode in the time-splitting scheme,
where the P-CSI is implemented.

2.1 Barotropic mode

POP uses the splitting technique to solve the barotropic and
baroclinic systems (Smith et al., 2010). The governing equa-
tions for the barotropic mode can be obtained by vertically
integrating Eqs. (1) and (2) from the ocean bottom topogra-
phy to the sea surface:

U
& _gVn+F, 3
o1 gvn+ (3
9
a—’zz—v.HUJrqw, @)

where U = H#HffHdzu(z) A %fi)Hdzu(z) is the vertically
integrated barotropic velocity, g is the gravity acceleration, n
is the sea surface height (defined as ps/pog, where ps is the
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surface pressure associated with undulations of the free sur-
face), H is the depth of the ocean bottom, gy, is the freshwa-
ter flux per unit area, and F is the vertical integral of all other
terms except the time-tendency and surface pressure gradi-
ent in the momentum Eq. (1). When we directly integrate the
continuity equation from the bottom to the surface, we will
getaformfdez(V-u+%—f) = %—;’+V-(H+n)U—qW =
0 under the surface boundary condition w(n) = i—;’ —qw =

%—'Z +u(n) - Vn — qyw. The term including 5 inside the diver-
gence leads to a nonlinear elliptic system, which cannot be
solved by many mature numerical methods such as the con-
jugate gradient methods. To avoid this, POP linearizes the
continuity equation by dropping the divergence term in the
boundary condition, which becomes w(n) = g—;’ — gw- Equa-
tion (4) is the resulting barotropic continuity equation, and
more details can be found in Smith et al. (2010).

All terms in Eq. (1) use the explicit scheme, with the ex-
ception of the implicit treatment of barotropic mode and the
semi-implicit treatment of the Coriolis and vertical mixing
terms. Because of the restriction of barotropic CFL num-
ber (defined as CFL = £%, where ¢ = /gH is the fastest
speed in barotropic mode, and 7 and Ax are the step sizes
in time and space, respectively), the implicit treatment of
the barotropic mode is necessary to simulate the fast grav-
ity waves with a speed of ¢ =200ms~! so that we can use
the same time step as the baroclinic mode, which has a ve-
locity scale of less than 2 m s~ (Huetal., 2015). Solving the
barotropic mode with an implicit method allows for a much
larger time step than with an explicit method. For example,
with the 0.1° POP model, an implicit method can use a time
step of 172.8 s; otherwise, it would be only 1.73's.

Equations (3) and (4) are then discretized in time using an
implicit scheme as follows:

Un+1 —_y"

T
n+1 _

=—gVn"t' 4+ F, (5)

n

77 — _v HUI‘!+1 +qw’ (6)

n
T
where 7 is the time step associated with the time advance
scheme. By replacing the barotropic velocity in Eq. (6) with
the barotropic velocity at the next time step in Eq. (5), an
elliptic system of sea surface height 7 is obtained:
n n
[—V.HV+L2];7"“ = —V~H[U—+£]+n—2+q—w. (7)
87 g & 87 8T

For simplicity, we can rewrite the elliptic Eq. (7) as
1 n+1 n
[-V-HV+—In"" =vO", 1), ®)
gt

where i represents a function of the current state of .

Spatially, the POP utilizes the Arakawa B-grid on the hori-
zontal grid (Smith et al., 2010) with the following nine-point
stencils to discretize Eq. (8) as follows (see Fig. 1):

[ I —
V-HVp= A—yax[AyHéxﬁy]y + Bcﬁy[AxHSyﬁx]x, )
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X(i-1,j+1)

X(i+1,j+1)

X(i-1,j-1) X(i+1,j-1)

Figure 1. Grid domain decomposition of the ocean model component in CESM.

where 8¢ (¢ € {x,y}) are finite differences and Ag (§ €
{x, y}) are the associated grid lengths. The finite difference

3¢ () and average Ws notations are defined, respectively, as
follows:

Sev = [V (E + Ae/2) — Y (& — Ae/2)]/ A,
VS =W (E + Ae/2) + ¥ (E — Ae/D)]/2.

(10)
)

Because the POP uses general orthogonal grids, the coef-
ficient matrix varies in space. To demonstrate the properties
of the sparse matrix used in the POP, we can simplify Eq. (9)
using a special case with uniform grids as follows:

[V-HVn); ;= (12)

1 _
- —[BOHTI,',]' +B"H; i imiz1 41

Sl,j

1N
+ EB (H; j+Hi—1,j)ni, j+1

1
+BNEH; i1+ 5BW(Hi—l,j
1
+Hi—1,j-0)ni-1,j+ EBE(Hi,j +H; j_)nit1,j
1

+BSWHi—1,j—177i—1,j—1 + EBS(Hi,j—l

+Hi -0 j-1+ BSEHi,j—l’?i+Lj—1]’

where §; j = AxAy and H= }‘(H,‘,j + Hi—1,j+Hi j—1+
H;_1,j—1); the H inside this equation is the ocean bottom
depth in the columns of U-points (Smith et al., 2010). The
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Bs are determined using Ax and Ay:

e Y
= —, = a’
Ax

BNW: BNE=BSW=BSE= —(0{+,3)/4,
BY=BF=(B-w)2,
BN=B%=(a-p)/2,

Boza-l-ﬁ.

o 13)

To make the discretization of Eq. (8) more succinct, notations
are introduced as follows:

ASJ. = BYH, (14)

1
N N
Aij = 5B (Hij+ Hiyj),
1
Ale = EBW(H,'_L/‘ +Hi_1,j-1),

1
AE; = EBE(Hi,j +H; 1),
a8 = gy H,
ij = 5B Hijo1+ Hiz1j1),
NW NW NE NE
A =B " Hi_j,A; ;7 =B""H,j,
A =BH; ;1. A =B H, .
These Al?fj (x € @={0, NW, NE, SW, SE, W, E, N, S}) are
coefficients between a grid point (i, j) and its neighbors us-
ing the nine-point stencil discretization (Eq. 9).
The full discretization of Eq. (8) for any given grid point
(i, j) can then be written as

(Af?j + )i+ Aﬁjwm-l,m + A?Ij i j+1
AN i AN
AL i+ ALY i1+ A
+ A i1 -1 = SV

5)

Sij - .
where ¢ = # is a factor of the time step.
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0 100 200 300 400
nz = 3870

Figure 2. Sparsity pattern of the coefficient matrix in the case with
30 x 15 grids using nine-point stencils.

Therefore, the elliptic Eq. (7) leads to a linear system of
n, i.e., Ax = b, where A is a block tridiagonal matrix com-
posed of coefficients Al?f j( x € Q). The simplified equation
set of Egs. (13), (14) and (15) shows that A is mainly de-
termined by the horizontal grid sizes, ocean depth and time
step. These impacts will be further discussed in Sect. 4.1.
Note that Eq. (15) also indicates that the sparsity pattern of
A comes directly from the nine nonzero elements in each row
(Fig. 2).

POP divides the horizontal domain into small blocks
evenly and distributes them to processes. We assume that
there are N and M grids along longitude and latitude, re-
spectively, and the global domain is divided into » - m small
blocks with a size of % . % These blocks are distributed to
processors using a simple Cartesian strategy or space-filling
curve method (Smith et al., 2010).

2.2 Barotropic solvers

The barotropic solver in the original POP uses the PCG
method with a diagonal preconditioner M = A(A) because
of its efficiency in small-scale parallelism (Dukowicz and
Smith, 1994) (see Appendix B1 for the details). To mitigate
the global communication bottleneck, ChronGear, a variant
of the CG method proposed by D’ Azevedo et al. (1999), was
later introduced as the default solver in the POP. It combines
the two separated global communications of a single scalar
into a single global communication (see Appendix B2). By
this strategic rearrangement, the ChronGear method achieves
a one-third latency reduction in the POP. However, the scal-
ing bottleneck still exists in the high-resolution POP using
this solver, particularly with a large number of cores (Fig. 3).

To accurately profile the parallel cost of the barotropic
solvers, we clearly separate the timing for computation, halo
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Figure 3. Number of unknowns per processor and percentage of ex-
ecution time in 0.1° POP using the default diagonal-preconditioned
ChronGear solver on Yellowstone.

exchange, and global reduction. Operations such as scalar
computations and vector scalings are categorized as pure
computations, which are relatively cheap due to the indepen-
dent operations on each process. The extra halo exchange
is required for each process to update the boundary values
from its neighbors (Fig. 1) after the matrix-vector multipli-
cation. This halo exchange usually costs more than the com-
putation when a large number of cores is used (due to a de-
creasing problem size per core). The global reduction, which
is needed by the inner products of vectors, is even more
costly (Hu et al., 2013). Worley et al. (2011) and Dennis et al.
(2012) specifically indicated that the global reduction in the
POP’s barotropic solver is the main scaling bottleneck for the
high-resolution ocean simulation.

Figure 3 confirms that the percentage of execution time for
the barotropic mode in 0.1° POP indeed increases with an in-
creasing number of processor cores on Yellowstone. When
470 cores are used, the execution time of the barotropic
solver is approximately 5 % of the total execution time (ex-
cludes initialization and I/0). However, when several thou-
sand cores are used, the percentage of time spent in the baro-
clinic mode decreases, associated with the increasing per-
centage of time in the barotropic solver. With more than
16 000 cores, the percentage of the total execution time due
to the barotropic solver is nearly 50 %.

3 Design of the P-CSI solver

The CG-type solver converges rapidly in the sequential com-
putation (Golub and Van Loan, 2012). However, the bottle-
neck of global communication embedded in ChronGear still
limits the large-scale parallel performance. Here, we design
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a new solver targeted for reducing global communication so
that the speed-up can be as close to unity as possible when a
significant number of cores are used.

3.1 Classical Stiefel iteration method

The CSI is a special type of Chebyshev iterative method
(Stiefel, 1958). Saad et al. (1985) proposed a generalization
of CSI on linearly connected processors and claimed that
this approach outperforms the CG method when the eigen-
values are known. This method was revisited by Gutknecht
and Rollin (2002) and shown to be ideal for massively par-
allel computers. In the procedure of preconditioned CSI (P-
CSI; details are provided in Appendix B3), the iteration pa-
rameters, which control the searching directions in the iter-
ation step, are derived from a stretched Chebyshev function
of two extreme eigenvalues (Stiefel, 1958). We demonstrate
in Sect. 4.2 that the stretched Chebyshev function in P-CSI
provides a series of preset parameters for iteration directions.
As a result, P-CSI requires no inner product operation, thus
potentially avoiding the bottleneck of global reduction. This
makes the P-CSI more scalable than ChronGear on massively
parallel architectures. However, it requires a priori knowl-
edge about the spectrum of coefficient matrix A (Gutknecht
and Rollin, 2002). It is well known that obtaining the eigen-
values of a linear system of equations is equivalent to solv-
ing it. Fortunately, the coefficient matrix A and its precondi-
tioned form in the POP are both positive-definite real sym-
metric matrices. Approximate estimation of the largest and
smallest eigenvalues, © and v, respectively, of the precondi-
tioned coefficient matrix is sufficient to ensure the conver-
gence of P-CSI.

To efficiently estimate the extreme eigenvalues of the pre-
conditioned matrix M~ A (where M is the preconditioner),
we adopt the Lanczos method (Paige, 1980) (see the algo-
rithm in Appendix C). Initial tests indicate that only a small
number of Lanczos steps are necessary to reasonably esti-
mate the extreme eigenvalues of M~'A that result in near-
optimal P-CSI convergence (Hu et al., 2015). Therefore, the
computational overhead of the eigenvalue estimation is very
small in our algorithm.

3.2 A block EVP preconditioner

Block preconditioning is quite promising in the POP because
parallel domain decomposition is ideal for the block struc-
ture. A block preconditioning based on the EVP method is
proposed and detailed in Hu et al. (2015); it improves the
parallel performance of the barotropic solver in the POP.
To the best of our knowledge, the EVP and its variants are
among the least costly algorithms for solving elliptic equa-
tions in serial computation (Roache, 1995) and have also
been used in several different ocean models (Dietrich et al.,
1987; Sheng et al., 1998; Young et al., 2012). The paral-
lel EVP solver was also implemented by Tseng and Chien
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(2011). The standard EVP is actually a direct solver, which
requires two solution steps: preprocessing and solving. In the
preprocessing stage, the influence coefficient matrix and its
inverse are computed, involving a computational complex-
ity of Cpre = (2n — 5) - 912 + (2n — 5)* = O(26n3), which is
intensive but computed only once at the beginning. The solv-
ing stage is computed at every time step and requires only
Cevp = 2:9n%+(2n—5)? = O(22n?) (Hu et al., 2015), which
is a much lower computational cost than those of other direct
solvers, such as LU.

The EVP method is efficient for solving elliptic equa-
tions. Although EVP preconditioning may increase the re-
quired computation for each iteration, the barotropic solver
can greatly benefit from the resulting reduction in the num-
ber of iterations, particularly at very large numbers of cores
when communication costs dominate (Hu et al., 2015). For
large-scale parallel computing, a larger number of proces-
sors typically results in smaller domains, which in fact favors
the application of the EVP method (Dietrich, 1975; Roache,
1995). If the domain size is too large without using domain
decomposition, the computation will be very slow (see the
complexity analysis in Sect. 4.3 when p = 1). Using paral-
lel domain decomposition can actually help and speed up the
EVP solver.

4 Algorithm analysis and comparison

The extreme eigenvalues of the coefficient matrix are critical
to determine the convergence of the iterative solvers (such
as P-CSI, PCG and ChronGear). Here, the characteristics of
P-CSI are investigated in terms of the associated eigenvalues
and their connection with the convergence rate. The compu-
tational complexity is also addressed.

4.1 Spectrum and condition number

Because the coefficient matrix A in the POP is symmet-
ric and positive-definite (Smith et al., 2010), its eigenval-
ues are positive real numbers (Stewart, 1976). We assume
that the spectrum (Golub and Van Loan, 2012) of A is S =
{A1, A2, ..., AN}, where Apin=A1 <A <An =Amax (1 <
i <N; N is the size of A) are the eigenvalues of A. The
condition number, defined as x = Amax/Amin, 1S determined
based on the spectral radius. Using the Gershgorin circle the-
orem (Bell, 1965), we know that for any A € S, there exists a
pair of (i, j) satisfying

A=A+l < D 1AL (16)
x€Q—{0}

where ¢ = g—fz is defined in Sect. 2.1. With the definition of
the coefficients in Eqgs. (13) and (14), we obtain
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Figure 4. Relationship between the CFL number and the condi-
tion number of the coefficient matrix, where the CFL number varies
from 1072 to 5.

Amax < (4dmax(c, é) + ®)max(H), (17)

11
Amin > Cmin(e¢ — —, — — ) + ®)max(H),
o o

where ® = ﬁ(m and where max(H) is the maximal depth
of the ocean bottom; for more details, refer to Appendix A,

To quantitatively evaluate the impacts of the condition
number, we set up a series of idealized test cases to solve
Eq. (8) in which the coefficient matrices are derived from
Egs. (13), (14) and (15) on an idealized cylinder with an
earth-sized perimeter, which is 2 R (radius R is 6372 km),
and a height of 7 R. A uniform grid with a size of N x M is
used, where the grid size along the perimeter and height are
Ax =2nR/N and Ay = R/M, respectively. The depth H
is set as a constant 4 km to simplify the analysis.

The inequalities Eq. (17) suggest that the lower bound of
the eigenvalues is mostly determined by &. If we assume

that the grid aspect ratio is unity, we can rewrite & = U%H

as © = m in terms of the barotropic CFL number (as
defined in Sect. 2.1). This indicates that, for a given ocean
configuration and grid size, the lower bound of the eigenval-
ues will decrease with increasing CFL number, resulting in
a larger condition number. Figure 4 shows the relationship
between condition number and the CFL number. In this ide-
alized test case, ® becomes very large and dominates both
Amax and Amin when the CFL number is sufficiently small
(smaller than 107! s). As a result, the condition number ap-
proaches 1. When the CFL number is large enough (i.e., ap-
proaches 5), the condition number is highly determined by
the grid aspect ratio @ because of the reduced impact of .
When the aspect ratio of the horizontal grid cell ap-
proaches unity, the upper (lower) bound of the largest (small-
est) eigenvalue decreases (increases), leading to a reduced
spectral radius ([Amin, Amax])- This implies that the condi-
tion number is also reduced simultaneously. Figure 5 shows
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Figure 5. Relationship between the aspect ratio and the condition
number of the coefficient matrix under the condition of different
typical CFL numbers.

the condition number vs. the aspect ratio, which is consis-
tent with the theoretical bounds of the extreme eigenvalues
in Eq. (17). As expected, the smallest condition number is
found in Fig. 5 when the grid aspect ratio approaches unity
regardless of the CFL number. When the aspect ratio equals
unity (i.e., o = i—i = 1), we obtain Ay, < (4+ ®)H and
Amin > PH.

Our analysis suggests that the spectral radius is confined
in (PH, (4+ ®)H) if the aspect ratio is unity regardless of
grid sizes. However, the condition number may vary greatly
because of the dependency on the grid size N and the aspect
ratio. When the grid size A increases, the largest eigenvalue
remains close to 4H, whereas the smallest eigenvalue be-
comes closer to ® H. Therefore, the condition number is sig-
nificantly affected when the aspect ratio is far from unity. To
focus on the impact of the number of grid points, we choose a
constant aspect ratio o = 1. Figure 6 shows that the condition
number increases monotonically with increasing grid size for
the four given different CFL conditions. It also shows that the
CFL number has a large impact on the condition number.

In the 0.1° POP simulation, the CFL number is ap-
proximately ¢ - At/Ax ~ 3.46 (where ¢ =200ms™!, Ar =
172.8s, and Ax =10000m are the typical gravity wave
speed, time step, and spatial resolution, respectively) and the
condition number is approximately 250. For comparison, the
condition number in the 1° POP simulation is higher, which
is approximately 1200.

4.2 Convergence rate

The convergence rate of any elliptic solver relies heavily on
the condition number of the preconditioned coefficient ma-
trix A’. Both PCG and ChronGear have the same theoretical
convergence rate because they are different implementations
of the same numerical algorithm (D’Azevedo et al., 1999).
Their relative residual in the kth iteration has an upper bound
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as follows (Liesen and Tichy, 2004):

[xx —x*[|ar

min max|p(k)| (18)
llxo —x*[lar —

pEPk,p(0)=11eS

where x is the solution vector after the kth iteration, x* is
the solution of the linear equation (i.e., x* = A~!b), A rep-
resents an eigenvalue of A’, and P is the vector space of
polynomials with real coefficients and a degree less than or
equal to k. Applying the Chebyshev polynomials of the first
type to estimate this min—max approximation, we obtain

f

k - ’
f+1) [Ixo —x*[|a, 19

Ik — x4 <2

where k = ko (A') = ““X is the condition number of matrix

mm

A’ with respect to the I, norm. Equation (19) indicates that
the theoretical bound of the convergence rate of PCG de-
creases with increasing condition number. PCG converges
faster for a well-conditioned matrix (e.g., a matrix with a
small condition number) than an ill-conditioned matrix.

We now show that the P-CSI has the same order of conver-
gence rate as PCG and ChronGear with the additional advan-
tage of fewer global reductions in parallel computing. With
the estimated smallest and largest extreme eigenvalues of co-
efficient matrix v and u, the residual for the P-CSI algorithm
satisfies

ri = Pr(A)ro, (20)

Where Pu(C) = fkgf(‘l;;“ for ¢ € [v, u] (Stiefel, 1958), o =

and B = Z:‘j 7(£) is a Chebyshev polynomial ex-

/1, v
pressed as

| k —k
Tk($)=§[($+ 52—1) +($+ 52—1) } 1)
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When & € [—1, 1], the Chebyshev polynomial has an equiv-
alent form

T (€) = cos(kcos ™€), (22)

which clearly shows that |74 (§)| <1 when |§| < 1. Pr(¢) is
the polynomial satisfying

P = i ax | . (23)
PGPk p(O) ls“ P
Assume that A’ = QTAQ, where A is a diagonal matrix
having the eigenvalues of A’ on the diagonal and Q is a real

orthogonal matrix with columns that are eigenvectors of A’.
We then have

Pe(A) =QTP(A)Q (24)
Pr (A1)
T Pr(X2)
=Q N Q.
Pr(Ay)

Assuming that v and p satisfy O<v <Xt <u (=

LN), Eq. (22) indicates that |8 —aA;| <1 and
|PcOhi)| = %};‘)‘) <7, '(B). Equations (20) and (24) in-
dicate that

208+VB*—DF

lrellz2
- 25
ol = % P 1+ (B+B— D% )
Vil =1,
<2
(«/_+1)

where k' = % Equation (25) shows that P-CSI has the same
theoretical upper bound of the convergence rate as PCG and
ChronGear when the estimation of eigenvalues is appropriate
(e.g., k' = k).

The foregoing analysis applies to cases in which a non-
trivial preconditioning is used. Assume that the precondi-
tioned coefficient matrix A’ = M~'A. Note that the precon-
ditioned matrix in the PCG, ChronGear and P-CSI algo-
rithms is actually M~ !/2A(M~1/2)T_ which is symmetric and
has the same set of eigenvalues as M~!A (Shewchuk, 1994).
Thus, the condition number of the preconditioned matrix is
k = ko (M~ 12AM~1/2)T) which is usually smaller than the
condition number of A. The closer M is to A, the smaller the
condition number of M~!A is. When M is the same as A,
then ko(M™'A) = 1.

Because the convergence rate of P-CSI is on the same or-
der as that of PCG and ChronGear, the performance between
P-CSI and the CG-type solvers should be comparable when a
small number of cores is used. When a large number of cores
is used for the high-resolution ocean model, P-CSI should be
significantly faster than PCG or ChronGear per iteration due
to the bottleneck in the CG-type method. This is shown in
the following analysis of computational complexity.

www.geosci-model-dev.net/9/4209/2016/
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4.3 Computational complexity

To analyze the computational complexity of P-CSI and com-
pare it with ChronGear, we define p as the number of pro-
cesses and N as the number of grid points (using the same
notation as in Hu et al., 2015). Both the ChronGear and P-
CSI solver time can then be divided into three major com-
ponents: computation 7¢, halo exchanging 7y, and global
communication 7. The complexity of computation varies
among different solvers and preconditioners. The halo ex-
change complexity is 7, = O(4w + 8\/¥19), where @ is
the ratio of point-to-point communication latency per mes-
sage to the time of one floating-point operation and ¥ is the
ratio of the transfer time per byte (inverse of bandwidth) to
the time of one floating-point operation. All halo exchange
times show a similarly decreasing trend with increasing num-
ber of processes, but have a lower bound of 4. The global
communication exists only in the ChronGear solver and con-
tains one global reduction per iteration, resulting from the
MPI_Allreduce and a masking operation that excludes land
points. The cost of the masking operation decreases with in-
creasing processes p, whereas the cost of MPI_Allreduce
monotonically increases; thus, the global reduction complex-
ity satisfies 7, = 0(2%/ +log pw).

The execution time of one diagonal preconditioned
ChronGear solver step can then be expressed as

%g = K:cg(% +Tp + ,Tg) (26)

= O(ch(IS%[ + Sgﬂ + (4+logp)w)),

where K is the number of iterations, which does not change
with the number of processes (Hu et al., 2015). The complex-
ity of P-CSI with a diagonal preconditioner is

%csi = O(KPCSi(lz% + Sgﬂ + 407)), (27)

where KCpsi is the number of iterations.

Equation (26) indicates that the computation and halo ex-
change time decrease with increasing numbers of processes.
However, the time required for the global reduction increases
with increasing numbers of processes. Therefore, we can ex-
pect the execution time of the ChronGear solver to increase
when the number of processors exceeds a certain threshold.
Our analysis shows that P-CSI has a lower computational
complexity than that of ChronGear due to the lack of a log p
term associated with global communications.

We further consider the computational complexity of pre-
conditioning. The EVP preconditioning has (’)(227). Thus,
with the EVP preconditioning, the computational complexity
of ChronGear and P-CSI becomes (9(39%[) and (9(33M),
respectively. As a result, the total complexities of ChronG}z:ar
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and P-CSI with EVP preconditioning are

N N
Tog—evp = o(/ccg,evp (39; +8 /?19 (28)

+ (4+10gp)w)),

N IN
%csi—evp =0 (’Cpcsi—evp (33; +38 ?19 + 4@')) . (29)

Although the computation time in each iteration doubles with
the EVP preconditioning, the total time may still decrease if
the number of iterations is reduced. Indeed, with EVP pre-
conditioning, the number of iterations Cycsi—evp decreases by
almost one-half (see Fig. 8). As a result, the total number of
communications, which is the most time-consuming part for
a large number of cores, decreases by approximately one-
half.

5 Numerical experiments

To evaluate the new P-CSI solver, we first demonstrate
its characteristics and compare it with PCG (and thus
ChronGear) using an idealized test case. The actual perfor-
mance of P-CSI in the CESM POP is then evaluated and
compared with that of the existing solvers using the 0.1°
high-resolution simulation.

5.1 Condition number and convergence rate

To confirm the theoretical analysis of the convergence in
Sect. 4.2, we created a series of matrices with the ideal-
ized setting illustrated in Sect. 4.1. Instead of a cylindri-
cal grid, we choose a spherical grid with two polar conti-
nents (ocean latitude varies from 80°S to 80°N). A uni-
form latitude—longitude grid is used in which the grid size
along the longitude varies with latitude coordinate 6, that is,
Ax = (2 R/N)cos6. The barotropic CFL number is set as
CFL = 3.46 (a typical value for a 0.1° POP simulation, as
discussed in Sect. 2.1). These cases differ with respect to the
number of grid points; thus, the condition numbers vary. We
compare the results using PCG and P-CSI solvers with no
preconditioning, diagonal preconditioning or EVP precondi-
tioning. Here, the block size in EVP preconditioning is set as
5 x 5 and the convergence tolerance is tol = 107°. We note
that the theoretical convergence rates of ChronGear and PCG
are identical; thus, the results here also apply to ChronGear.

As shown in Fig. 7, when the problem size increases, the
coefficient matrix becomes more poorly conditioned, thus in-
creasing the number of iterations. For both PCG and P-CSI,
the convergence rate varies with different preconditioners.
Given the same problem size, the solvers without precon-
ditioning need the largest number of iterations, while those
using the EVP preconditioning require the fewest. This con-
firms that with the EVP preconditioning, the matrix becomes
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Figure 7. Relationship between grid sizes and number of iterations
of different solvers in test cases with the idealized configuration.

better conditioned than the matrix without preconditioning
or with diagonal preconditioning. As shown in the previous
section, the P-CSI has the same theoretical lower bound of
the convergence rate as PCG and ChronGear when the esti-
mation of extreme eigenvalues is appropriate (k" = k). How-
ever, P-CSI commonly has a slower convergence rate than
that of PCG if the same preconditioning is applied (Fig. 7).
Because P-CSI requires that 0 <v < A; < u(i=1,...,N),
which means that X’ = /v > Amax/Amin = &, Egs. (19) and
(25) suggest that the P-CSI will converge more slowly than
the PCG unless the estimation of extreme eigenvalues is op-
timal. Furthermore, the theoretical bound is often too conser-
vative for PCG as the problem size increases in application,
which is not completely linear (known as superlinear conver-
gence of the PCG method; Beckermann and Kuijlaars, 2001).
Note that the diagonal preconditioner only slightly improves
the convergence in our idealized cases because of the uni-
form grid and the constant ocean depth configuration.

If the condition numbers are very large, any advanced pre-
conditioner that can quickly reduce the iteration count will
be very useful for improving performance. In fact, the EVP
solver is a direct fast solver; thus, it is very suitable as the
preconditioner within each block. It is also simple enough
to effectively reduce the condition number of the coefficient
matrix by approximately 5 times in both 1 and 0.1° cases,
leading to a 2/3 reduction in the number of iterations. Even
so, further studies regarding the preconditioner in practical
climate models will be very useful and will be our future
work.

5.2 A practical application using the high-resolution
CESM POP

5.2.1 Experiment platform and configuration

We evaluate the performance of P-CSI in CESM1.2.0 on the
Yellowstone supercomputer, located at NCAR-Wyoming Su-
percomputing Center (NWSC) (Loft et al., 2015). Yellow-
stone uses Intel Xeon E5-2670 (Sandy Bridge: 16 cores at
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Figure 8. The convergence rate of different barotropic solvers with
diagonal preconditioners and the convergence rate of CSI solvers
with different preconditioners in the 0.1° POP on Yellowstone.

2.6 GHz, hyperthreading enabled, 20 MB shared L3 cache)
and provides a total of 72576 cores connected by a
13.6 GBps InfiniBand network. More than 50 % of Yellow-
stone’s cycles are consumed by CESM. Therefore, the abil-
ity to accelerate the parallel performance on Yellowstone is
critical to support the CESM production simulations.

To emphasize the advantage of P-CSI, we use the finest
0.1° grid and a POP with 60 vertical levels with the
“G_NORMAL_YEAR” configuration, which uses active
ocean and sea ice components (i.e., the atmosphere and
land components are replaced by pre-determined forcing data
sets). The I/O optimization is another important issue for the
high-resolution POP (Huang et al., 2014) but is not addressed
here.

The choice of ocean block size and layout has a large im-
pact on performance for the high-resolution POP because it
directly affects the distribution of the workload among pro-
cessors. To remove the influence of different block distribu-
tions on our results, we carefully specify block decomposi-
tions for each core with the same ratio. The time step is set to
the default of 172.8s. For a fair comparison among solvers,
the convergence is checked every 10 iterations for all tests.
The impacts of CSI and the EVP preconditioner are evaluated
separately using several different numerical experiments.

5.2.2 Overall performance of P-CSI

This experiment is designed to illustrate the overall perfor-
mance of P-CSI, which is particularly important for high-
resolution production simulations. Figure 8 compares the
convergence rate (relative residual vs. the number of itera-
tions) among different barotropic solvers with different pre-
conditioners. The P-CSI converges slightly more slowly than
PCG and ChronGear with the same diagonal preconditioner
at the beginning and final iteration steps, which is related to
the unstable distribution of the coefficient matrix’s eigenval-
ues. However, the slopes are similar for all of these solvers,
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Figure 9. The execution time for different phases using different barotropic solvers and the execution time for different phases with different

preconditioners in the P-CSI solver in 0.1° POP.

thus supporting the same upper bound for the convergence
rate, as discussed in Sect. 4.2.

Figure 9 further evaluates the solver time for the differ-
ent phases. P-CSI outperforms ChronGear primarily because
it only requires a few global reductions in the convergence
check. No significant differences can be found for the halo
exchange and the computation phases when using large core
counts, except for the evident reduction in execution time for
the halo exchange with the EVP preconditioner. The reduc-
tion in global communications will also significantly reduce
the sensitivity of the ocean model component to operating
system noise (Ferreira et al., 2008) by increasing the time
interval between global synchronizations.

According to Fig. 8, the P-CSI solver can reach the same
relative residual using many fewer iterations with the EVP
preconditioner. As a result, it reduces not only the execu-
tion time of global reduction, but also the execution time of
halo exchange owing to the reduced iterations which are il-
lustrated in Fig. 9. All of these results are consistent with the
theoretical analysis in Sect. 4.3. Note that the extra computa-
tion operations required by the EVP preconditioner have only
a small impact on the overall performance of the barotropic
solver.

The overall performance of P-CSI in a realistic 0.1° POP
simulation is illustrated in Fig. 10. Using the EVP pre-
conditioner, P-CSI can accelerate the barotropic calculation
from 6.2 SYPD (simulated years per wall-clock day) to
10.5 SYPD on 16875 cores. Dennis et al. (2012) indicated
that 5 simulated years per wall-clock day is the minimum re-
quirement to run long-term climate simulations. In Sect. 2,
we demonstrated that the percentage of the POP execution
time required by the barotropic solver increases with increas-
ing number of cores using the original ChronGear solver.
In particular, ChronGear with diagonal preconditioning ac-
counts for approximately 50 % of the total execution time on
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16 875 cores (see Fig. 3). In contrast, Fig. 10 also shows that
by using the scalable P-CSI solver, the barotropic calculation
time constitutes only approximately 16 % of the total execu-
tion time on 16 875 cores. Finally, we note that based on an
ensemble-based statistical method for the 1° POP, Hu et al.
(2015) verified that the climate is not changed by using our
new solver.

6 Conclusions

We accelerated the high-resolution POP in the CESM frame-
work by implementing a new P-CSI ocean barotropic solver.
This new solver adopts a Chebyshev-type iterative method
to avoid the global communication operations in conjunction
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with an effective EVP preconditioner to improve the parallel
performance further. The superior performance of the P-CSI
is carefully investigated using the theoretical analysis of the
algorithm and computational complexity. Compared with the
existing ChronGear solver, it significantly reduces the global
reductions and realizes a competitive convergence rate. The
proposed alternative has become the default barotropic solver
in the POP within CESM and may greatly benefit other cli-
mate models.

7 Code availability

The present P-CSI solver v1.0 is available at https://zenodo.
org/record/56705 (Huang et al., 2016) and https://github.
com/hxmhuang/PCSI. This solver is also included in the up-
coming CESM public release v2.0. For the older CESM ver-
sions 1.2.x, the user should follow these steps indicated in
the Readme.md file.

Geosci. Model Dev., 9, 4209-4225, 2016

X. Huang et al.: An accelerated barotropic solver

1. Create a complete case or an ocean component case.

2. Copy our files into the corresponding case path and
build this case.

3. Add two lines at the end of the user_nl_pop?2 file to use
our new solver.

4. Execute the preview_namelists file to activate the solver.

5. Run the case.

The user are welcome to see the website mentioned above
for more details and use the configuration files to repeat our
experiments.
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Appendix A: Estimation of extreme eigenvalues with
variable ocean depth H

Rewrite the full discretization of Eq. (8) for any given grid
point (i, j):

(AL + @)1 + AL tim 1 + AN i1 (A1)
+ A+ AN i
+ AEj”iH-,j + A,‘S,\]Nﬁi—l,jfl + Affjni,j,]
+ A o = SV

According to the Gershgorin circle theorem (Bell, 1965), we
know that for any A € S, there exists a pair of (i, j) satisfying

A=A +d)l < D 1ALl (A2)
x€Q—{0}

The upper bound of eigenvalues can be deduced as follows.

LA +o+ D 1AL (A3)
x€Q—{0}
=2(a+p)H +2la — BIH + ¢

= 4max (o, é)ﬁ—l— ¢
< (4max(c, l) + ®)max(H)
o

The lower bound of eigenvalues can be deduced as follows:

2= AL+ DAL (A4)
x€Q—{0}
= 2la—BIH +¢

=2min(e — B, B —)H + ¢

11
> 2min(e — —, — —«a) + ®)max(H),
o o

where H is defined in Sect. 2.1.

Appendix B: Algorithms
B1 PCG algorithm

The procedure of PCG is shown as follows (Smith et al.,
2010).

Initial guess: xq

Compute residual ro = b — Ax

Setsog=0, Bo=1

Fork=1,2,..., knax do

1. r;{fl :M_lrk_l
T /
2. fr=r_ g1y

3. sk =r)_; + (Bx/Br—1)sk-1
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4. s} = Asy

5. ok = Pi/(sy8})

6. X =Xp_1+aisk

T. ry=rig—1— Olks;c

8. convergence_check(ry)

End Do

Operations such as Bi/Br—1 in line (3) are scalar compu-
tations, whereas o sy in line (6) are vector scalings. Asy in
line (4) is a matrix-vector multiplication. Inner products of
vectors are rzflr}ﬁl in line (2) and szs; in line (5); these
inner products use two global reduction operations.

B2 ChronGear algorithm

The procedure of ChronGear is shown as follows.
Initial guess: x¢

Compute residual ro = b — Axg
Setso=0,py=0,00=1,00=0
Fork=1,2,..., knax do

Lr,= M lrig

2.z = Ar;{

3. pe=r;_r}

4. ox =z}r), — Bok—1

5. Bk = pr/pr-1

6. ay = pr/ok

7. sk =r) + BiSk—1

8. pr=zk+ Bkpi—1

9. X =Xp—1+asg
10. rp=ri—1 —oxpy
11. convergence_check(ry)

End Do

The inner products in p; and oy use two global reduc-
tion operations. However, these two global reductions can be
combined into one operation, thus halving the latency.

B3 P-CSI algorithm

The pseudocode of the P-CSI algorithm is shown as follows.
Initial guess: x¢, estimated eigenvalue boundaries [v, u]
Seta:uzv,ﬂzﬁ—:‘j,yzg,w():%

Compute residual 7o =b —Axg, Axo=y ‘M rg, x; =
X0+ Axo, r1 =b—Ax,

Fork=1,2,..., kmax do
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Lo =1/(y = gz or-1)

2.r, = M 1r,

3. Axp=axry + (yor — DAxg_g
Xp+1 = Xg + Axg

Tyl =b—Axpq

AN U

convergence_check(ry)

End Do

Appendix C: Eigenvalue estimation

The procedure of the Lanczos method to estimate the ex-
treme eigenvalues of the matrix M ' A is shown as follows.
Initial guess: rg

Setso=M"lro;q, =ro/(ris0);qo=0;o=0; 1o=0;
To=9

Forj=1,2,...,mdo

2. rj= Apj —ﬁ./_lqj_l

5.5;=M"7r;
6. /3]' =r}ij
7. if B;==0 thenreturn

8. wj=max(uj-1,a;+B;j+Bj-1)
9. Tj = tri_diag(Tj_l,ozj, ﬂj)

10. v; = eigs(T;,'smallest’)

11. if|M’ff1—1|<e and |l ——L|<e thenreturn
i =

12. g1 =rj/B;

End Do

Geosci. Model Dev., 9, 4209-4225, 2016

X. Huang et al.: An accelerated barotropic solver

In step (9), T is a tridiagonal matrix which contains
aj(j=1,2,...,m) as the diagonal entries and B;(j =
1,2,...,m — 1) as the off-diagonal entries.

ar B
B ar B
Tn = ,32 N
,Bm—l
Bim—1 Qm

Let &min and &nax be the smallest and largest eigenvalues of
T,,, respectively. Paige (1980) demonstrated that v < &pip <
v+381(m) and u — 82 (m) < &Emax < . As m increases, 61 (m)
and & (m) will gradually converge to zero. Thus, the eigen-
value estimation of M~!A is transformed to solve the eigen-
values of T,,. Step (8) in eigenvalue estimation employs the
Gershgorin circle theorem to estimate the largest eigenvalue
of T,,, that is, u = maxlsigmz;';l |T;j] = maxj<j<m(a;i +
Bi + Bi—1). The efficient QR algorithm (Ortega and Kaiser,
1963) with a complexity of ®(m) is used to estimate the
smallest eigenvalue v in step (9).
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