
atmosphere

Article

Influences of the North Pacific Victoria Mode on the
South China Sea Summer Monsoon

Ruiqiang Ding 1,2,*, Jianping Li 2,3, Yu-heng Tseng 4 ID , Lijuan Li 1, Cheng Sun 3 and Fei Xie 3

1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
ljli@mail.iap.ac.cn

2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine
Science and Technology, Qingdao 266061, China; ljp@bnu.edu.cn

3 College of Global Change and Earth System Sciences (GCESS), Beijing Normal University, Beijing 100875,
China; scheng@lasg.iap.ac.cn (C.S.); fisherff@126.com (F.X.)

4 Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; tsengyh@ntu.edu.tw
* Correspondence: drq@mail.iap.ac.cn; Tel.: +86-10-8299-5181

Received: 10 May 2018; Accepted: 5 June 2018; Published: 8 June 2018
����������
�������

Abstract: Using the reanalysis data and the numerical experiments of a coupled general circulation
model (CGCM), we illustrated that perturbations in the second dominant mode (EOF2) of springtime
North Pacific sea surface temperature (SST) variability, referred to as the Victoria mode (VM),
are closely linked to variations in the intensity of the South China Sea summer monsoon (SCSSM).
The underlying physical mechanism through which the VM affects the SCSSM is similar to the
seasonal footprinting mechanism (SFM). Thermodynamic ocean–atmosphere coupling helps the
springtime SST anomalies in the subtropics associated with the VM to persist into summer and to
develop gradually toward the equator, leading to a weakened zonal SST gradient across the western
North Pacific (WNP) to central equatorial Pacific, which in turn induces an anomalous cyclonic flow
over the WNP and westerly anomalies in the western equatorial Pacific that tend to strengthen the
WNP summer monsoon (WNPSM) as well as the SCSSM. The VM influence on both the WNPSM
and SCSSM is intimately tied to its influence on ENSO through westerly anomalies in the western
equatorial Pacific.

Keywords: Victoria mode; South China Sea summer monsoon; ENSO

1. Introduction

The South China Sea summer monsoon (SCSSM) is one of the most important components
of the Asian summer monsoon (ASM) system because the South China Sea (SCS) is located at the
center of the Asian-Australian monsoon system and connects four monsoon subsystems: the Indian
monsoon, the western North Pacific (WNP) monsoon, the East Asian (EA) monsoon, and the Australian
monsoon [1–3]. The onset of the SCSSM signifies the beginning of the large-scale summer monsoon
and rainy season over the EA and WNP [4–7]. Because of its unique geographic location and important
implications for adjacent monsoon subsystems, the study of the SCSSM has received considerable
attention over the last decades.

The SCSSM exhibits considerable interannual variability [3,8,9]. Many studies suggest that El
Niño-Southern Oscillation (ENSO) is the dominant factor that influences the interannual variation
of the SCSSM [3,10–14]. They found that ENSO exerts substantial influences on the SCSSM not only
during its developing phase but also during its decaying phase. During the El Niño developing
summer, the cyclonic anomaly associated with westerly anomalies in the equatorial western Pacific
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due to the El Niño warming can lead to a strong SCSSM. In contrast, during the summer following
El Niño, an anomalous WNP anticyclone, which develops rapidly during the El Niño developing
fall and persists until the following summer possibly because of a local positive thermodynamic
feedback [15], Indian Ocean capacitor effect [16], or nonlinear interactions between ENSO and the
Western Pacific warm pool annual cycle [17], can affect the SCS’s climate and hence SCSSM. In addition
to ENSO, other factors have also been shown to play a role in the year-to-year variations in the
SCSSM intensity or onset, including the Indian Ocean sea surface temperature (SST) forcing [18–21],
local air-sea interaction [22,23], and the extratropical-tropical interaction [24,25].

Recent studies reported that the spring Victoria mode (VM), defined as the second empirical
orthogonal function mode (EOF2) of North Pacific SST anomalies poleward of 20◦ N [26], has a significant
impact on the Pacific Intertropical Convergence Zone (ITCZ) precipitation during the following
summer [27] and ENSO during the following winter [28]. Given that the developing ENSO exerts
a forcing effect on the SCSSM, it is very likely that the spring VM could also have an impact on the
SCSSM. However, the influences of the VM on the SCSSM have not been documented in the literature.
The focus of this paper is to establish the delayed influence of the VM on the SCSSM. Specific questions
of interest: Is there a close connection between the spring VM and the subsequent SCSSM? If so,
how does the VM affect the SCSSM? Is there any relationship between influences of the VM on the
SCSSM and ENSO?

2. Data, Model, and Indices

2.1. Observed Datasets

We used atmospheric fields from the National Centers for Environmental Prediction-Department
of Energy (NCEP-DOE) reanalysis version 2 (NCEP2) (1979–2017) [29]. We used SST from the National
Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed SST, version 4 (ERSSTv4)
(1854–2017) [30]. The monthly precipitation data were obtained from the Climate Prediction Center
(CPC) Merged Analysis of Precipitation (CMAP) dataset (1979–2017) [31].

Our analysis focuses on the time period 1979–2017 based on the availability length of the NCEP2
reanalysis, precipitation, and SST data. Monthly anomalies were obtained by removing the 1981 to
2010 climatological mean annual cycle. We focus mainly on the relationship between the VM and
SCSSM on the interannual timescale. To reduce the effect of decadal variability associated with the VM
and SCSSM, a 13-year high-pass Gaussian filter is then applied to VM and SCSSM indices to remove
their decadal variability, leaving the variability mostly on the interannual timescale.

2.2. Numerical Models

Fully coupled model experiments were also used to investigate the effect of the VM on the
SCSSM. The Flexible Global Ocean-Atmosphere-Land System Model Grid-point version 2 (FGOALS-g2)
developed by the LASG, IAP, Chinese Academy of Sciences is used in this study [32]. Its atmospheric
and oceanic components are the Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2)
and the LASG IAP Ocean Model version 2 (LICOM2), with a resolution of about 2.8◦ × 2.8◦ and
1◦ × 1◦ in horizontal and 30- and 26-layers in vertical, respectively. The land and sea ice model of
FGOALS-g2 are the Community Land Surface Model version 3 (CLM3) from the National Center for
Atmospheric Research (NCAR) and the improved Community Ice CodE version 4 (CICE4) by the
LASG (CICE4-LASG).

2.3. The Monsoon Indices

The SCSSM index (SCSSMI) used in this study was the meridional shear vorticity index defined
by Wang et al. [3]:

SCSSM = U850N (5◦ N–15◦ N, 110◦ E–120◦ E) − U850 (20◦ N–25◦ N, 110◦ E–120◦ E),
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where the first and second terms on the right-hand side denote the 850-hPa zonal wind averaged
over (5◦ N–15◦ N, 110◦ E–120◦ E) and over (20◦ N–25◦ N, 110◦ E–120◦ E), respectively. The SCSSMI
is a good indicator of SCSSM rainfall and intensity. A positive (negative) index is associated with an
anomalous cyclone (anticyclone) at 850 hPa in the northern SCS, enhanced (reduced) rainfall over the
central-northern SCS, and hence a strong summer monsoon (Figure 1). The western North Pacific
summer monsoon (WNPSM) index (WNPSMI) was defined by the differences in the 850-hPa zonal
wind averaged over (5◦ N–15◦ N, 100◦ E–130◦ E) and over (20◦ N–30◦ N, 110◦ E–140◦ E) [33].
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Figure 1. Correlations of summer (June–September (JJAS)) precipitation (shaded) and wind vectors
at 850 hPa (vector) with the concurrent South China Sea summer monsoon (SCSSM) index (SCSSMI).
Positive (red) and negative (blue) precipitation anomalies, with correlation significant at the 90%
confidence level, are stippled. Only wind vectors at 850 hPa with correlation significant at the 90%
confidence level are shown.

2.4. The VM Index

Previous studies reported that the VM is an SST footprint forced by the North Pacific Oscillation
(NPO)-like atmospheric variability [28]. The NPO is strongest in winter (December–February
(DJF)) [34], while the VM reaches peak around spring (February–April (FMA)) as a delayed response to
the NPO forcing [28]. Therefore, we performed EOF analysis of FMA-averaged SST anomalies over the
North Pacific poleward of 20◦ N (after removing the global mean SST anomaly) (Figure 2). The leading
EOF mode (EOF1), which explains 27.3% of the total variance, exhibit a basin-wide horseshoe-like
spatial pattern over the North Pacific, with SST anomalies of one sign in the western and central
North Pacific surrounded by anomalies of the opposite sign along the west coast of North America.
This mode is conventionally referred to as the Pacific decadal Oscillation (PDO) [35,36]. The EOF2,
which explains 14.2% of the total variance, exhibits a tilted SST anomaly dipole pattern oriented in the
northeast–southwest direction, characterized by a band of positive SST anomalies in the northeastern
North Pacific and a band of negative SST anomalies extending from the central North Pacific to the
WNP. This mode is referred to as the so-called VM [26–28]. The VM index (VMI) is defined as the
second principal component (PC2) time series associated with the EOF2. A strongly positive (negative)
VM case is defined as a year in which the VMI exceeds one positive (negative) standard deviation for
the period 1979–2017 (Table 1).
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Figure 2. Spatial patterns and corresponding principal components (PCs) of the first two leading EOF
(empirical orthogonal function) modes of FMA (February–April)-averaged sea surface temperature
(SST) anomalies over the North Pacific poleward of 20◦ N (after removing the global mean
SST anomaly).

Table 1. Member years of positive and negative Victoria mode (VM) cases for the period 1979–2017.

Positive VM 1982, 1991, 1997, 2005, 2014, 2015

Negative VM 1983, 1987, 1988, 1998, 1999, 2010, 2016

2.5. Statistical Methods

For this study, the statistical significance of correlation, regression, and composite values is
determined based on a two-tailed Student t-test and the effective number of degrees of freedom Ne f f .
Ne f f was estimated using the following approximation [37,38]:

Ne f f ≈
N

1 + 2
N
∑

i=1

N−i
N RX(i)RY(i)

(1)

where N is the total number of available time steps and RX(i) and RY(i) are the autocorrelations of
the two sampled time series X(i) and Y(i) (i = 1, . . . , N), respectively.

3. Results

3.1. Relationship Between the VM and SCSSM

Considering that the SCSSM typically begins around mid-May and retreats around
September [3,39,40], we first computed the correlations of the FMA VMI with monthly SCSSMI from
May to September (Figure 3a). The correlation is relatively weak in May and June, but increases rapidly
after July, and reaches (and even exceeds) the 90% confidence level through September. Figure 3b
shows the composite differences in the monthly evolution of the SCSSMI between strongly positive and
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negative VM cases. It shows that the strongly positive VM cases are followed by significant positive
values of the SCSSMI in July and September, consistent with the correlation analysis. Figure 3c shows
the time series of the FMA VMI and the following July–September (JAS) SCSSMI. Their correlation is
0.46 (significant at the 99% confidence level), slightly higher than the correlation (0.40, significant at
the 95% confidence level) of the FMA VMI with the June–September (JJAS) SCSSMI. These results
suggest that the FMA VMI is more strongly correlated with the SCSSMI at the later stage of the SCSSM
(the JAS season) than at its early stage (May–June).
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Figure 3. (a) Correlations of the February–April (FMA) VM index (VMI) with monthly SCSSMI
from May to September. The horizontal dashed line shows the 90% confidence level; (b) Composite
differences in the monthly evolution of the SCSSMI between strongly positive and negative VM cases.
Red closed circles indicate the values significant at the 90% confidence level; (c) Time series of the FMA
VMI (red line) and the following June–September (JAS) SCSSMI (green line).

To further elaborate the lagged relationship between the VM and SCSSM, we performed a
singular value decomposition (SVD) analysis [41] of the cross-covariance matrix between the FMA
SST anomalies in the North Pacific (20◦ N–65◦ N, 125◦ E–100◦ W) and the JAS precipitation anomalies
in the SCS monsoon region (0◦–22◦ N, 110◦ E–120◦ E). The leading SVD mode accounts for about
51% of the total squared covariance between the two fields. The correlation coefficient between the
corresponding expansion coefficients is 0.67 (significant at the 99.9% confidence level) (Figure 4c),
indicating that the two fields included in the SVD are strongly coupled. The expansion coefficients
of the two fields have strong correlations of 0.94 and 0.61, respectively, with the FMA VMI and JAS
SCSSMI. This suggests that these two SVD time series are closely linked to variations in the intensity
of the VM and SCSSM, respectively.

The FMA North Pacific SST pattern of the leading SVD mode is characterized by the signature
of the VM with significantly positive correlations in the northeastern North Pacific and significantly
negative correlations extending from the central North Pacific to the WNP (Figure 4a). The summer
precipitation pattern in the SCS for the leading SVD mode shows positive (but not significant)
correlations in the central-northern SCS and significantly negative correlations in the southern SCS
(Figure 4b), closely resembling the SCSSM-related precipitation pattern in Figure 1. These patterns
indicate that a strong VM in late winter and early spring will be followed by an increased (reduced)
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summer precipitation in the central-northern SCS (in the southern SCS) and thus a strong SCS monsoon.
These results are generally consistent with the conclusions from Figure 3 and further confirm the
strong lagged relationship between the VM and SCSSM.
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Figure 4. Spatial properties of the leading singular value decomposition (SVD) mode for (a) the
FMA SST anomalies in the North Pacific (20◦ N–65◦ N, 125◦ E–100◦ W) and (b) the following JAS
precipitation anomalies in the SCS (South China Sea) monsoon region (0◦–22◦ N, 110◦ E–120◦ E),
shown as correlation maps of the respective heterogeneous SST and precipitation fields with the SVD
leading normalized expansion coefficients. Areas with the correlation coefficients significant at the 90%
confidence level are shaded. (c) The SVD leading normalized expansion coefficients of the FMA SST
field (red line) and the following JAS precipitation field (green line).

Given that ENSO has a significant influence on the SCSSM [3,10–14], the question naturally
arises as to whether ENSO could also have an impact on the relationship between the VM and
SCSSM. To answer this question, we computed the partial correlation between the FMA VMI and
the following JAS SCSSMI by removing the effect of the previous winter (DJF)’s ENSO signal
(represented by the Niño3.4 index). The removal of the ENSO signal only reduces the correlation
from 0.46 to 0.38 (still significant at the 95% confidence level), indicating that the relationship between
the VM and SCSSM is weakly affected by (or relatively independent of) previous winter’s ENSO.
Therefore, the springtime VM may be regarded as an independent predictor for the SCSSM’s intensity.

3.2. Mechanisms

We have demonstrated that the springtime VM is closely linked to the SCS summer (JAS)
monsoon’s intensity. Next it is necessary to examine the underlying mechanisms through which
the VM affects the SCSSM. The mechanisms by which the extratropical atmospheric variability over
the North Pacific influences the tropical Pacific SST anomalies have been extensively discussed [42–47].
It is proposed that the extratropical atmospheric variability can initiate a basin-scale SST structure via
modifying the wind-stress field and in turn net surface heat flux. This SST footprint, which is referred
to as the VM, reaches a maximum in spring, and persists until summer via the wind-evaporation-SST
(WES) feedback [48] in the subtropics (5◦–20◦ N). These persistent subtropical SST anomalies can
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then force the overlying atmosphere to initiate tropical SST anomalies (the seasonal footprinting
mechanism) [43,44].

To examine the impact of the VM on SST, precipitation, and surface wind anomalies over the
SCS, lagged regressions are calculated with respect to the FMA VMI (Figure 5). During spring (MAM),
the VM is associated with a basin-wide tripole SST anomaly pattern in the North Pacific, with a band
of positive SST anomalies extending from the west coast of North America to the central equatorial
Pacific, a band of negative SST anomalies extending from the central North Pacific to the WNP,
and another band of positive SST anomalies in the Pacific north of 35◦ N. At this time, the SST anomaly
pattern associated with the VM in the tropical central eastern Pacific bears a resemblance to a Pacific
meridional mode (PMM) pattern, with positive SST anomalies in the northeastern subtropical Pacific
and negative SST anomalies in the equatorial eastern Pacific, indicating that the VM is closely linked to
the PMM. However, we would like to emphasize that the VM is a basin-scale North Pacific SST pattern.
In addition to the PMM pattern, there are significant negative SST anomalies associated with the VM in
the WNP. The WNP SST anomalies have been shown to have an important contribution independent
of the PMM to the initiation of ENSO events [49]. Therefore, in contrast to the local influence of the
PMM, the VM may play a unique role (i.e., as a basin-scale influence) in affecting the tropical Pacific
climate [28].
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Figure 5. Regressions of the 3-month averaged SST (shading), wind vectors at 850 hPa (vector),
and precipitation (stippled) anomalies onto the FMA VMI for FMA (a); MAM (b); AMJ (c); MJJ (d);
JJA (e); and JAS (f). Positive (red) and negative (blue) SST anomalies, significant at the 90% confidence
level, are shaded. Positive (green) and negative (red) precipitation anomalies significant at the 80%
confidence level are stippled. Only 850 hPa wind vectors significant at the 90% confidence level
are shown.
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During summer (JJA), negative (positive) SST anomalies in the central North Pacific (in the
high-latitude North Pacific) gradually decay. Instead, SST anomalies in the subtropical North Pacific
persist until summer and develop toward the equator via the seasonal footprinting mechanism,
resulting in significant positive SST anomalies in the central-eastern equatorial Pacific and significant
negative SST anomalies in the WNP. The SST warming in the central-eastern equatorial Pacific and
the cooling in the WNP weaken the zonal SST gradient across the WNP to central equatorial Pacific,
which in turn induces the anomalous westerlies in the western equatorial Pacific. These anomalous
westerlies cause low-level divergence and convergence respectively over the Maritime Continent and
central equatorial Pacific, thereby leading to enhanced (suppressed) convection and precipitation
over the central equatorial Pacific (over the Maritime Continent) [27]. At the same time, the diabatic
heating associated with precipitation anomalies induces a low-level cyclonic flow over the WNP
as a Gill-type Rossby-wave response [50], which in turn gives rise to a westerly flow on its south
flank (see also Figure 6 for the results from a simple numerical experiment using the Matsuno-Gill
model). This westerly flow enhances the anomalous westerlies in the western equatorial Pacific,
which reinforces the positive (negative) precipitation anomalies over the central equatorial Pacific
(over the Maritime Continent). This positive feedback process among SST, precipitation, and zonal
stress in the western tropical Pacific helps to amplify and sustain the anomalous cyclone over the WNP
during the JAS season, leading to a strong WNPSM over the Philippine Sea. When the WNPSM is
strong, the SCSSM is also intensified because of the robust in-phase relation between the WNPSM and
SCSSM [3], as confirmed by significant positive correlations between the WNPSM and SCSSM indices
(R = 0.95, significant at the 99.9% confidence level) and between the FMA VMI and the JAS WNPSMI
(R = 0.49, significant at the 99% confidence level). We note that significant precipitation anomalies
associated with the VM during JAS are mainly located over the Maritime Continent, and there is really
a precipitation response to the VM in the SCS but this response is relatively weak (not significant)
(Figure 5f).
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Figure 6. (a) Distribution of the prescribed ideal heating and cooling for the Matsuno-Gill model.
The location of the prescribed ideal heating (cooling) source is consistent with the distribution of
maximum positive (negative) precipitation anomalies during JAS, with strength decreasing from the
center to the surroundings. (b) Analytical solutions for horizontal winds forced by the heating and
cooling in (a).
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To further elucidate the effect of the VM-related SST anomalies on the SCSSM, two numerical
experiments using the FGOALS-g2 are performed with and without the VM-related SST anomalies
in the North Pacific (denoted as the forcing and control experiments, respectively). The VM-related
SST anomalies in the North Pacific poleward of 10◦ N are obtained from regressions of the FMA
SST anomalies onto the concurrent VMI (not shown). The control run was integrated for 23 years
and forced with the climatological SST, and the last 12 years were used to provide the basic annual
mean state. The forcing experiment was integrated for 18 years and forced with the VM-related SST
anomalies imposed on the climatological SST, and the last 12 years were used in the composite analysis.
The composite differences in the seasonal evolution of SST, precipitation, and surface wind anomalies
between the forcing and control experiments are shown in Figure 7. The results from the CGCM
experiments confirm that the VM-related North Pacific SST anomalies during FMA can extend to
tropics during the following summer that subsequently lead to the development of the anomalous
cyclone over the SCS. It can also be seen that the anomalous westerly flow is significant in the central
and southern SCS, which implies that the SCSSM is intensified. These simulated results are almost
consistent with the observation (Figure 5), and further indicate that the VM may play an important
role in influencing the SCSSM’s intensity.
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Figure 7. Composite differences in the seasonal evolution of SST (shading), wind vectors at 850 hPa
(vector), and precipitation (stippled) anomalies between the forcing and control experiments for
FMA (a); MAM (b); AMJ (c); MJJ (d); JJA (e); and JAS (f). Positive (red) and negative (blue) SST
anomalies, significant at the 90% confidence level, are shaded. Positive (green) and negative (red)
precipitation anomalies significant at the 90% confidence level are stippled. Only 850 hPa wind vectors
significant at the 90% confidence level are shown.

The results described above reveal the mechanism through which the VM affects the SCSSM.
However, it should be noted that some strong VM events are not followed by the SCSSMI of the
same sign (Figure 3c). For example, 2015 was such a year in which the FMA VMI was 2.4 (one of the
strongest VM events on record [51]), while the JAS SCSSMI was −1.5. In addition, 1997 was also a
typical year in which a positive VM event is followed by a weak SCSSM (the FMA VMI and the JAS
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SCSSMI were 1.28 and −0.20, respectively). It is important to understand why the VM is ineffective in
affecting the SCSSM in these years. By examining the seasonal evolution of SST and 850 hPa wind
anomalies in 2015 (Figure 8), it is found that an El Niño event followed by a strong VM is developing
in the tropical Pacific during summer. But at the same time, a strong Indian Ocean dipole (IOD) event
(positive SST anomalies in the western Indian Ocean and negative SST anomalies in the eastern Indian
Ocean south of Indonesia) [52] is also happening in the tropical Indian Ocean. It has been reported in a
previous study that a moderate positive IOD event occurred in 2015 concurrent with the 2015/2016
extreme El Niño [53]. The IOD-related dipole SST pattern is associated with the anomalous easterly
in the equatorial Indian Ocean and the southern SCS, thereby possibly leading to a weak SCSSM.
Similarly, 1997 was also a strong positive IOD event co-occurring with an extreme El Niño in which the
relationship between the VM and SCSSM broke down. These results suggest that the influences of the
VM on the SCSSM may be weakened in some years by the interference between the IOD and El Niño
when an El Niño and a positive IOD event (or a La Niña and a negative IOD event) co-occur. Moreover,
the VMI accounts for only about 15% of the variance of the SCSSMI. Therefore, when considering the
influence of the VM on the SCSSM, we cannot exclude the role of other possible factors, such as the
IOD. Further study is required to examine the joint effect of the VM and other factors on the SCSSM,
which may substantially contribute to the prediction of the SCSSM.
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3.3. Linkage Among the VM, SCSSM, and ENSO

The above analysis suggests that the VM has a significant influence on the SCSSM. Previous studies
reported that the VM also plays an important role in initiating ENSO. Given that the VM can affect
both the SCSSM and ENSO, we may wonder whether there is any linkage between influences of
the VM on the SCSSM and ENSO. As shown in Figure 5, the VM-related SST warming in the
central-eastern equatorial Pacific induces an anomalous westerly in the western equatorial Pacific that
in turn influences the SCSSM. Conversely, the reduced convective precipitation and latent heat release
in the southern SCS associated with the SCSSM may cause an intensification of low-level divergence
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there and hence strengthened westerlies in the western equatorial Pacific, which are conducive to the
development of an El Niño event.

We investigated the joint relation among the VM, SCSSM, and ENSO through a scatterplot between
the FMA VMI and the following JAS SCSSMI, stratified by whether the FMA VMI has the opposite or
the same sign as the following DJF Niño3.4 index (Figure 9). We noted that the correlation between the
VM and SCSSM indices is high (R = 0.77; significant at the 99.9% confidence level) when the VM and
Niño3.4 indices have the same sign (Figure 9a), while the correlation is only −0.39 (not significant even
at the 90% confidence level) when the VMI is opposite to the Niño3.4 index (Figure 9b). These results
suggest that the processes in the tropical Pacific involved in the VM influence on ENSO may be
inherently linked to those involved in its influence on the SCSSM. If the VM cannot induce an ENSO
event in the following winter, there is a much higher probability that the VM is also ineffective in
influencing the SCSSM. Similar results are obtained when the FMA VMI and the following DJF Niño3.4
index are conditioned upon whether they have the same or opposite sign (not shown), suggesting that
the influence of the VM on ENSO also depends on its influence on the SCSSM.
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Figure 9. (a) Scatterplot of the FMA VMI versus the following JAS SCSSMI, plotted only for those years
in which the FMA VMI has the same sign as the following DJF (December–February) Niño3.4 index;
(b) As for (a) but for only those years in which the FMA VMI has the opposite sign as the following
DJF Niño3.4 index. In (a) and (b), the correlation coefficient of the FMA VMI with the following JAS
SCSSMI is given in the upper left corner.

Previous studies have shown that the relationship between ENSO and the SCSSM is an interactive
process. ENSO not only influences the SCSSM during its developing phase, but is also affected by the
SCSSM-related westerly anomalies in the western equatorial Pacific during its developing phase [54,55].
Our results suggest that the interactive relationship between ENSO and the SCSSM may partly arise
from the mutual influence of the VM on both ENSO and the SCSSM through the VM-related westerly
anomalies in the western equatorial Pacific. Therefore, a systematic dynamic link among the VM,
SCSSM, and ENSO may exist: VM(spring)→ SCSSM(summer) � ENSO(winter) . It follows that the
SCSSM plays an important role in linking the VM to ENSO. Furthermore, our study also suggests
that the precursor SST pattern of ENSO is similar to that of the SCSSM. In addition to the VM-related
SST pattern in the North Pacific, southern Indian Ocean SST anomalies [56], northern tropical Atlantic
SST anomalies [57,58], and a quadrapole SST pattern in the extratropical South Pacific [59,60] have
been identified as useful precursors for ENSO events. All of these factors have been shown to
affect ENSO mainly via influencing the anomalous cyclonic circulation over the WNP and wind
anomalies over the western equatorial Pacific. Meanwhile, we note that these factors could also serve
as important precursors for the SCSSM (Figure 10), which provides further evidence that influences of
these preceding signals on ENSO may be closely related to their influences on the SCSSM.
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4. Summary and Discussion

This study has explored the lagged relationship between the VM and SCSSM. Our results have
indicated that the VM may significantly affect the interannual variations of the SCSSM’s intensity,
as supported by significant positive correlations between the FMA VMI and the following JAS SCSSMI.
It appears that the SCSSM tends to strengthen when the springtime VM is stronger than normal.
This influence of the VM on the SCSSM’s intensity is relatively independent of the previous winter’s
ENSO influence on the SCSSM’s intensity.

The present analysis reveals that the VM exerts an effect on the SCSSM’s intensity mainly via the
so-called seasonal footprinting mechanism. That is, SST anomalies in the subtropics associated with the
springtime VM persist into summer and develop gradually toward the equator, resulting in a weakened
zonal SST gradient across the WNP to the central equatorial Pacific. Then, changes in the zonal SST
gradient in the tropical Pacific produce an anomalous cyclonic flow over the WNP and westerly
anomalies in the western equatorial Pacific, thereby intensifying the WNPSM as well as the SCSSM
(see Figure 11 for a schematic diagram). At the same time, the VM-induced wind stress anomalies in the
western equatorial Pacific are conducive to initiating an ENSO event. Therefore, the VM influence on
both the WNPSM and SCSSM is simultaneously associated with its influence on ENSO, indicating that
the VM may serve as a useful predictor to enhance predictive skill of both the SCS-WNP summer
monsoon and ENSO.
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Figure 11. Schematic figure illustrating how anomalous SST in the tropical Pacific associated with the
VM causes an anomalous cyclonic flow over the WNP (western North Pacific) and westerly anomalies
in the western equatorial Pacific that tend to intensify the WNP summer monsoon (WNPSM) as well as
the SCSSM.
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Recent studies reported a pronounced strengthening of the VM since 1990 [26,28,61]. This recent
strengthening of the VM may be attributed to a response of North Pacific climate system to anthropogenic
forcing and global warming [61]. If global warming will continue, the VM may be expected to play
an increasingly important role in influencing the SCS-WNP summer monsoon in coming decades.
Further work is needed to explore the long-term variations of the VM itself, as well as its role in affecting
the tropical climate system’s variability and predictability.
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