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Abstract
Mesoscale convective systems (MCSs) are important components of tropical weather systems and the climate system. Long-
term data of MCS are of great significance in weather and climate research. Using long-term (1985–2008) global satellite 
infrared (IR) data, we developed a novel objective automatic tracking algorithm, which combines a Kalman filter (KF) with 
the conventional area-overlapping method, to generate a comprehensive MCS dataset. The new algorithm can effectively 
track small and fast-moving MCSs and thus obtain more realistic and complete tracking results than previous studies. A few 
examples are provided to illustrate the potential application of the dataset with a focus on the diurnal variations of MCSs over 
land and ocean regions. We find that the MCSs occurring over land tend to initiate in the afternoon with greater intensity, 
but the oceanic MCSs are more likely to initiate in the early morning with weaker intensity. A double peak in the maximum 
spatial coverage is noted over the western Pacific, especially over the southwestern Pacific during the austral summer. Oceanic 
MCSs also persist for approximately 1 h longer than their continental counterparts.
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1  Introduction

Tropical convection is a key component of the global cli-
mate system because it transports mass, momentum and heat 
vertically. The convection sometimes organizes into mes-
oscale convective systems (MCSs), which are prominent 
features occurring worldwide. They have captured much 
attention due to their extensive impacts, including strong 

winds, precipitation, flooding, hail and lightning (Houze 
2004). MCSs that occur over ocean regions can be precur-
sors of tropical cyclones (Bister 1996; Gray 1998; Teng 
et al. 2014). Moreover, they play a critical role in connect-
ing atmospheric convection with large-scale atmospheric 
circulation patterns (Chen et al. 1996; Laing and Fritsch 
2000; Moncrieff 2010). MCSs are composed of convective 
cores and stratiform anvils, whose vertical and horizontal 
structures evolve during different phases of their life cycle 
(Houze 1982). In particular, MCSs are embedded within 
tropical waves (Jakob 2003), synoptic-scale super-clusters 
and the Madden-Julian Oscillation (Nakazawa 1988), affect-
ing the atmosphere and atmosphere–ocean coupling across a 
range of scales (Moncrieff 2013). The complex structure of 
MCSs and their interactions with their surroundings hinder 
the monitoring and forecasting of MCSs. To obtain a better 
understanding of the role of MCSs in the climate system, 
building a comprehensive long-term dataset of MCSs over 
the whole tropics is highly desirable.

The emergence of Earth-orbiting satellites and geosta-
tionary observations make it possible to observe MCSs con-
tinuously at global scales. Detecting MCSs using satellite 
data has a long history. In general, the detection of MCSs 
involves two major steps: the identification of MCSs and 
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the tracking of their evolution (e.g., Machado and Rossow 
1993; Machado et al. 1998; Schröder et al. 2009; Hennon 
et al. 2011; Fiolleau and Roca 2013a). In the identification 
step, each MCS is located in satellite observations using a 
set of criteria and constraints. The tracking step then aims to 
determine the track of each MCS via comparison of various 
properties of the MCSs at successive times.

At the identification stage, the convective clusters in each 
satellite snapshot are captured and labelled. Boer and Ram-
anathan (1997) proposed an iterative multi-threshold cloud 
identification scheme to improve the delineation of cloud 
boundaries. This scheme identifies both the convective cores 
and stratiform anvils associated with MCSs, and thus deline-
ates their “true” spatial extents (Zhang et al. 1999; Wilcox 
and Ramanathan 2001; Roca et al. 2002; Xu et al. 2005). 
However, the multi-threshold identification method tends to 
produce smaller clusters than the single-threshold method. 
Williams and Houze (1987) used a specified threshold to 
objectively identify cloud clusters. Mapes and Houze (1993) 
further discussed the choices of threshold and developed a 
single-threshold method that has been commonly adopted in 
climatological research on MCSs (Pope et al. 2008; Goyens 
et al. 2012; Fiolleau and Roca 2013b).

The tracking stage represents a special type of multiple 
object tracking problem because MCSs continuously evolve 
and deform during their lifetimes. MCSs differ significantly 
from each other in terms of their morphology and inten-
sity, and the properties vary rapidly during the lifetimes of 
MCSs. In addition, an individual MCS can split into two or 
more MCSs or merge with other MCSs. As a result, succes-
sively tracking each targeted convective system has been a 
challenge. Manually tracking was applied in early studies, 
but this process is labor intensive and subjective with large 
uncertainties. To overcome these limitations, various objec-
tive automatic methods have been proposed over the past few 
decades, including the area-overlapping method (Williams 
and Houze 1987), the overlap of ellipsoidal equivalents 
(Boer and Ramanathan 1997), the centroid tracking method 
(Johnson et al. 1998), and the maximum spatial correlation 
method (Carvalho and Jones 2001).

The most widely used automated method is the area-over-
lapping method (Williams and Houze 1987; Arnaud et al. 
1992; Mathon and Laurent 2001). This method assumes that 
the MCSs in successive frames represent the same entity 
if there are sufficient common overlapping pixels in their 
images. Some methods use a searching radius (Dixon and 
Wiener 1993; Johnson et al. 1998) to find the MCS in the 
next image rather than searching for overlapping pixels. The 
main problem for the fixed-search-radius methods is that 
MCSs can move at different speeds and thus a fixed radius 
is not reliable for all MCSs. It makes the tracking process 
more difficult by setting the searching radius. The area-over-
lapping method is conceptually straightforward and works 

reasonably well for tracking large and slow-moving MCSs. 
However, it assumes that the location and area of MCSs 
do not change significantly with time. The method tends to 
fail for small and fast-moving MCSs, especially when the 
temporal resolution of available satellite observations is low. 
In addition, the cloud tracking algorithm (CTA) is another 
type of overlapping method, which performs overlapping of 
ellipsoidal equivalents (Boer and Ramanathan 1997). Pre-
viously, the cloud masks needed to be extracted and stored 
to calculate the overlapping area. Now, the cloud masks 
are no longer required for the CTA to reduce its computa-
tional costs and memory load. However, the CTA may not 
be applicable to data with larger sampling intervals, in that 
MCSs may travel too far in several hours to assure accurate 
association. This property also explains why small systems 
cannot be tracked with these overlapping schemes (Boer and 
Ramanathan 1997).

To remedy the limitations of conventional area-overlap-
ping methods, Kalman Filter (KF) based methods are used 
in this work. The KF is an optimal estimator that can predict 
the state of a process and use measurements to correct its 
predictions. One of its many successful applications is object 
tracking (e.g., Reid 1979; Xing et al. 2009). Through esti-
mating the speed and direction of the target systems, the KF 
method can robustly track small and fast-moving systems, 
which is not well-represented or even missed by conven-
tional area-overlapping methods. As a result, the complete 
life cycles of MCSs can be better captured.

Previous endeavors in MCS identification and tracking 
were generally limited in terms of their temporal and spa-
tial coverage. To the best of our knowledge, Hennon et al. 
(2011) provides the only publicly available, long-term 
tropical cloud cluster (TCC) dataset. However, the MCSs 
that develop or move over land areas are not included in 
their TCC dataset. In this study, we combine the overlap-
ping method with KF-based approaches to perform MCS 
tracking. Moreover, we apply this novel method to long-term 
global satellite infrared brightness temperature observations 
to construct a long-term tropical MCS dataset that covers 
both land and ocean regions.

The paper is structured as follows. Section 2 introduces 
the satellite data and the design of our new tracking algo-
rithm. The MCS dataset and selected applications are 
described in Sect. 3. Section 4 summarizes the results and 
discusses further potential applications of this dataset.

2 � Data and methods

We used the European Union Cloud Archive User Service 
(CLAUS) project dataset (Hodges et al. 2000), a global 
dataset based on the calibrated International Satellite Cloud 
Climatology Project (ISCCP) B3 radiance data (Rossow and 
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Schiffer 1999), in this work. CLAUS has been widely used 
to detect convective activity (e.g., Yang and Slingo 2001; 
Nguyen and Duvel 2008; Dias et al. 2012; Dong et al. 2016). 
The available CLAUS data provides global brightness tem-
peratures (BTs) at 3-h intervals sampled at 30 km (or 1/3°) 
scale, which provides a good indication of convection.

2.1 � MCS identification

Low BTs generally correspond to the cold cloud shields of 
convective systems. The criteria for identifying MCSs are 
generally based on BT thresholds and minimum area cov-
erage thresholds. The identification of MCSs is illustrated 
in Fig. 1. Utilizing 3-hourly satellite data, pixels satisfying 
the pre-defined criteria (defined below) are isolated from 
the surrounding continuous BT field. The bottom panel of 
Fig. 1 gives an example of how a potential MCS is detected. 
All pixels with BT values smaller than the threshold are 
extracted in the first step. The adjacent pixels are then con-
sidered to be part of a coherent region of interest (ROI). 
ROIs larger than the area coverage threshold are considered 
to be potential MCSs. In step 2, ROI B is found to be a 
potential MCS, while ROI A is discarded since it is too small 
to meet the area coverage threshold (Fig. 1).

One difficulty in the identification of MCSs is the lack 
of consensus on the definition of MCSs. BT thresholds 
ranging from 255 to 208 K have been proposed (Mapes and 
Houze 1993; Chen et al. 1996; Machado et al. 1998). For 

the minimum area coverage thresholds, values from 100 
to 100,000 km2 (Maddox 1980; Morel and Senesi 2002a; 
Kolios and Feidas 2010) have been applied to satellite data 
with different resolutions and channels. An overview of the 
thresholds for identifying MCSs is provided in Table 1 of 
Goyens et al. (2012). Although this overview is not exhaus-
tive, it showed that a wide range of threshold values have 
been used in previous studies. Some studies have used a 
variable threshold of BT in different ocean basins to account 
for differences in climatological background convection tem-
peratures (Hennon et al. 2011, 2013). Imposing stricter cri-
teria will certainly exclude some potential MCSs, whereas 
the use of less strict thresholds may result in the inclusion 
of some spurious MCSs.

Goyens et al. (2012) reviewed the criteria used in the 
identification of MCSs and suggested broad adoption of a 
BT threshold of 233 K to indicate tropical atmospheric con-
vection. Fiolleau and Roca (2013b) also concluded that a 
threshold of 233 K is reasonable, and this value has been 
widely used in many previous investigations. Therefore, in 
this work, the BT threshold is set to 233 K, and the mini-
mum area coverage is set to 5000 km2 to produce a proto-
type dataset without loss of generality. Considering the wide 
range of BT and area coverage thresholds used, we provide 
a flexible interface that enables users to provide their own 
criteria for MCS identification to generate datasets of inter-
est. Our focus is thus on the applicability of the algorithm 
instead of the specific criteria used.

Continuous Satellite field Segmented pixels  

A

B

(b) Using coverage area Threshold(a) Using BT Threshold

Step 1 Step 2

Fig. 1   The schematic of the MCS identification method. Top panel: 
Getting the continuous brightness temperature (BT) distribution 
from each satellite snapshot (left panel) and extracting pixels from 
the background field (right panel). Bottom panel: An illustration of 
how we identify a potential MCS within a sample domain during one 

time step. a All pixels that satisfy the BT threshold are identified and 
marked in light blue. b Adjacent pixels are linked as coherent regions 
(region A is shown in green and region B is shown in dark blue) if 
their sizes are larger than the prescribed area coverage threshold
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2.2 � MCS tracking

Once all potential MCSs have been identified at consecutive 
times, we need to determine their trajectories. The evolution 
of MCSs is a continuous process, but satellite observations 
are discrete and limited by their temporal resolution. For each 
potential MCS identified at the current time t, the potential 
MCSs at the next time step (t + 1) are searched to identify 
matches. The critical technical challenge in tracking strate-
gies is how to match the potential MCSs, i.e., how to identify 
the same potential MCSs in successive time frames.

Physically, the location of a single MCS in two consecutive 
frames is constrained by the theoretical maximum distance 
the MCS can travel. Thus, the conventional area-overlapping 
tracking method assumes that MCSs in successive frames 
belong to the same entity if there are sufficient common over-
lapping pixels in their images. An overlapping rate threshold 
is pre-defined. For each potential MCS at time (t + 1), if more 
than one potential MCS at time t meets the requirements, the 
algorithm selects the potential MCS with the greatest degree of 
overlap. However, this method fails if there are no overlapping 
pixels between the pairs of successive frames; for example, 
small and fast-moving MCSs may not overlap when a 3-hour 
interval is used. On the other hand, the KF method assumes 
that the moving state of a potential MCS at time t evolved from 
its prior state at time (t-1). The probability of moving state st 
can be represented as

The potential MCS evolves from the prior state at time (t-1) 
according to the following equation,

where the moving state vector st =
(
xt yt ẋt ẏt

)
 contains 

the coordinates (xt, yt) and velocity (ẋt, ẏt) of a MCS at time 
t. The state transition matrix A describes the dynamics from 

(1)P
(
st |s1 ∶ st−1

)
= P(st|st−1)

(2)st = Ast−1 + q

time t − 1 to t. The process noise term q is assumed to be 
drawn from the standard normal distribution.

After initiation, in each tracking time step t, the KF 
method first predicts the movement state of the potential 
MCS, then updates its estimation by maximizing the pos-
terior probability st of the observed position of the target 
potential MCS(see Appendix A for more details).The dis-
tance between the position of a potential MCS and the posi-
tion of the predicted potential MCS at time (t + 1) are then 
calculated to determine the most appropriate potential MCS 
for the continuation (right panel in Fig. 2). One uncertainty 
of the KF algorithm stems from the measured positions of 
the potential MCSs. We determine the position of a potential 
MCS by averaging the coordinates of the coldest 10 pixels 
inside the cold cloud shield. If a potential MCS contains 
fewer than 10 pixels, then the geographic information of all 
the pixels are averaged to establish the position. Both meth-
ods introduce uncertainties into the position determination 
because of the irregular shape and inhomogeneous spatial 
distribution of cloud systems. The larger the potential MCS, 
the more difficult it is to accurately determine its exact posi-
tion. Note that a larger MCS is more likely to overlap with 
itself in consecutive frames.

The tracking procedures of the area-overlapping method 
and the KF method are compared schematically in Fig. 2. 
Each panel in each column represents one of the three dis-
tinct steps of the tracking algorithm. All the potential MCSs 
are identified at two successive times in the first step. The 
major difference between the two tracking approaches is 
highlighted in the middle panel of Fig. 2. The area-over-
lapping method compares the potential MCSs at time t with 
each potential MCS at time (t + 1) by evaluating the overlap 
percentage (left panel). In this case, the potential MCS C2 
from t2 is associated with the two candidate potential MCSs 
in t1, A1 and B1. For the area-overlapping method, the 
overlapping rates A(C2, B1) and A(C2, A1) between each 

Table 1   Features of MCSs 
tracked by the area-overlapping 
(AOL) method and our new 
method (KF) in 2000

Total number indicates the cumulative number of MCSs occurring over the whole year
The latter three variables indicate the mean lifetime, size and moving speed of each MCS. The size and 
moving speed are calculated by averaging over each time step of the lifespan of each MCS. The base com-
parison of MCSs records between AOL and KF are detected from the BT threshold of 233  K, the area 
coverage threshold of 5000 km2 and the overlapping threshold 15%. The sensitivity experiments for chang-
ing the criteria are KF_T228, KF_A10000 and KF_25% with a lower BT threshold of 228 K, a larger area 
coverage threshold of 10,000 km2 and a higher overlapping threshold 25% separately

Feature
Method

Total number Mean lifetime (h) Mean size (km2) Mean 
speed 
(km/h)

AOL 46,512 10.74 83,679 40.9
KF 58,234 11.85 61,486 42.3
KF_T228 50,668 11.75 50,766 39.6
KF_A10000 38,847 12.73 82,420 41.9
KF_25% 58,219 11.85 60,162 40.6
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candidate potential MCS in t1 with the candidate potential 
MCS in t2 are calculated. In the right panel, the area-overlap-
ping method fails since there is no overlap between the two 
potential MCSs at two successive times, due either to the 
small coverage or rapid movement of the potential MCSs. 
The KF method is able to predict the positions of potential 
MCSs at the next time step (t + 1). By comparing the Euclid-
ean distance of the predicted position and the actual position 
of potential MCSs at (t + 1), the closest potential MCSs that 
satisfy the distance threshold are considered to be the same 
system. The KF method predicts the position of A1 and B1 
at t2 (pA2 and pB2) from their previous positions at t1 (pA1 
and pB1). The distances between the position of C2 and pA2 
and pB2 are then compared.

The bottom panel in Fig. 2 provides further illustration of 
the trajectories derived from the area-overlapping and KF 
methods. Even if the area-overlapping method fails or cannot 
identify a reasonable track given the limitations imposed by 
temporal resolution, the KF method can help track the MCSs 
and thus obtain a better coverage of the MCS life cycle (see 
Fig. 3). If a potential MCS persists over at least 3 successive 
frames (Nguyen and Duvel 2008), i.e., it has a life duration 
longer than 6 h, it will be recorded as one MCS. On average, 
4,718 MCSs were recorded in each month after this dura-
tion requirement was imposed, and this number accounts for 
approximately 32% of the total number of potential MCSs 
tracked.

The advantages of the KF method are illustrated in Fig. 3 
over the coast of western Africa on 2nd Jan 1993. In this 

example, the area-overlapping method failed to track the 
MCSs with IDs 918 and 993. In addition, it failed to track 
the MCS with ID 1048 in the last time frame. MCS 918 
initiated at 15:00 on 2nd Jan. (Fig. 3b) and had propagated 
southwest by the next time step (Fig. 3c). The area-overlap-
ping method mislabels MCS 918 as two different systems 
due to the small overlapping area of MCS 918 between two 
successive frames. As a result, the area-overlapping method 
misses MCSs 918 and 993 because they failed to persist over 
3 successive time steps. MCS 1048 initiated at 12:00 on 
2nd Jan and had a long lifespan; it had dissipated by 03:00 
3rd Jan (Fig. 3a–f). However, the area-overlapping method 
lost its track (Fig. 3f), resulting in a shorter lifespan for it 
(Fig. 3h). In contrast, the KF method is able to capture the 
complete life cycle of these MCSs (Fig. 3g).

Statistically, the KF method can keep track of poten-
tial MCSs, whereas the overlapping method failed 31% of 
the time during 1985–2008. The area-overlapping method 
resulted in a large percentage (64%) of potential MCSs last-
ing for only one time step. On the other hand, the percentage 
of potential MCSs seen in only one time step was reduced 
by 48% after the KF method was used.

Table 1 shows the basic features of the MCSs tracked 
by the KF and area-overlapping methods during year 2000. 
The total number of MCSs that persisted at least 3 succes-
sive frames using the KF method is 58,234 over the whole 
year, which is approximately 25% greater than that obtained 
using the area-overlapping method. The average life span of 
the MCSs determined by the KF method is approximately 

Fig. 2   A schematic illustration 
of the differences between the 
area-overlapping (left) and KF 
(right) tracking methods. Step 1 
determines all potential MCSs 
from the identification stage. 
Step 2 associates each potential 
MCS in the subsequent time 
step with all potential MCSs 
in the current time step. Step 
3 links the same potential 
MCSs into a single trajectory. 
The area-overlapping method 
matches C2 with B1 based on 
their larger overlapping rate. 
The KF method selects B1 
because the predicted position 
of B1 (pB2) is closer to the 
position of C2 (pC2)
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11.8 h, which is about one hour longer than that obtained 
using the area-overlapping method (10.7 h). The average 
moving speed of MCSs is 11.75 m s−1 (42.3 km/h), which 
is slightly larger than that of MCSs tracked only by the 
area-overlapping method. Overall, the KF method tracked 
more small MCSs with a mean size of 61,486 km2, which 
is smaller in size than that obtained without the KF method 
(83,679 km2). These results indicate that the KF method 
performs better in capturing small and fast-moving MCSs, 
and thus is a preferred approach for MCS tracking. Next, we 
show some preliminary results with a focus on the diurnal 
variations of MCSs over land and ocean regions based on 
the MCS dataset.

3 � Application examples

3.1 � Dataset description

Using the CLAUS dataset, we generated a long-term 
tropical MCSs dataset that covers the period from 1985 

to 2008 with a BT threshold of 233 K and an area cover-
age threshold of 5000 km2. As mentioned above, users 
of the dataset can easily change the criteria used in the 
algorithm to generate MCS records that meet their needs. 
The dataset contains basic trajectory information along 
with other characteristics of each MCS, including inten-
sity, area, eccentricity and lifetime (Table 2). The MCSs 
identified in Jan 1985 may have initiated in the preceding 
month, and the MCSs identified in Dec 2008 may have 
dissipated in the following month, which lie outside the 
time period covered by the CLAUS dataset. To ensure 
that all MCSs contain their entire lifespans, the records in 
Jan 1985 and Dec 2008 are discarded. Houze (2004) con-
cluded that tropical cyclones might spin up from MCSs. 
Our MCSs dataset have not removed the tropical cyclones 
to keep the integrity of MCSs data that could be used to 
investigate the relationship between MCSs and tropical 
cyclones (Kouadio et al. 2010; Yuan and Houze 2010). 
The number of tropical cyclones is very small compared 
to that of MCSs, and thus has negligible effects on the 
following MCSs statistical analysis.

Fig. 3   Cloud top BTs obtained 
from the CLAUS dataset from 
12:00 UTC 2nd Jan to 03:00 
UTC 3rd Jan 1993 are shown 
in (a–f). The pixels contained 
within red contours have BTs 
less than 233 K. The trajectories 
of MCSs that form on 2nd Jan 
1993 and persist over at least 
3 frames, as determined using 
the new KF-based method and 
the area-overlapping (AOL) 
method, are shown in (g, h), 
respectively. Each dot displays 
the centroid of a MCS in each 
time step, and the initiation time 
is labeled in (g, h). The brackets 
in (g) indicate MCS IDs from 
the output dataset file
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To make the data accessible to a wide user community, 
the MCS dataset is available online at https://doi.pangaea.
de/10.1594/PANGAEA.877914. In addition, we performed 
a series of sensitivity experiments using different criteria to 
verify our algorithm. As discussed before, different criteria 
lead to different MCSs records, and influence the climato-
logical features of MCSs, including intensity, coverage area 
and lifetime. A small BT threshold (KF_T228 in Table 1) 
leads to less MCSs being identified, with shorter lifetime and 
smaller size. A larger coverage area threshold (KF_A10000 
in Table 1) also generates less MCSs, but with longer life-
time and larger size. A larger overlapping threshold (KF_25% 
in Table 1) in the tracking stage has minor influence in the 
MCSs number, lifetime and size. The detection results con-
firmed the robustness and effectiveness of our new tracking 
method. These datasets derived from different criteria can 
also be obtained from the same website. The detailed imple-
mentation, including parallel optimization of the algorithm, 
is presented in Appendix B.

3.2 � Spatial distribution of MCSs

The annual mean geographical distributions of MCS occur-
rence frequency, intensity, size, and lifetime are displayed 
in Fig. 4 along with precipitation from the Global Precipi-
tation Climatology Project (GPCP) (Arkin 1989; Huffman 
et al. 1997) and the Tropical Rainfall Measuring Mission 
(TRMM). The GPCP v2.3 monthly product (Adler et al. 
2003) includes the precipitation rate over the full period 
(1985–2008) at a spatial resolution of 2.5°. The TRMM v7 
(Huffman et al. 2007) 3B43 monthly rainfall data is from 
1998 to 2008 with a higher spatial resolution of 0.25°. All 
of the precipitation datasets have been interpolated to a 
1° grid.

As expected, the MCS occurrence corresponds closely to 
the GPCP and TRMM precipitation distributions (Fig. 4b, 
c). The location of each MCS is defined by its centroid at 
each time step. Similar to the precipitation distributions, 
the regions with the most frequent occurrence of MCSs are 
located over tropical Africa, Amazonia and the Maritime 
Continent. MCSs are also prevalent over the tropical warm 
pool and intertropical convergence zone (ITCZ) and mon-
soon trough. Few MCSs appear in the tropical southeastern 
Pacific and the southern Atlantic, where relatively low SSTs 
and stable atmospheric conditions inhibit the development 
of convection. The distribution of MCS occurrence from 
our new dataset agrees well with other MCSs datasets, such 
as those determined using ice scattering signatures (Mohr 
and Zipser 1996), mesoscale convective complexes (MCCs, 
Laing and Fritsch 1997), TCCs (Hennon et al. 2013) and 
deep convection weather states (Tan et al. 2015) in the trop-
ics. The similarities in the spatial distribution of MCCs with 
those in other datasets indicates the robustness and reliabil-
ity of the new method. We also examined the spatial distri-
bution of the occurrence of MCSs after changing the criteria 
used in the identification stage, and the correlation coef-
ficient between different MCS datasets is greater than 0.95.

The intensity of MCSs can be represented by the aver-
aged BTs of their pixels (Table 2, BTavg). Note that BTs 
are a measure of convective activity with lower values for 
more intense convection. For this study, our intensity defini-
tion is BTavg, therefore lower values mean greater intensity. 
Overall, MCSs are more intense over land than over oceans, 
and the most intense MCSs occur in central Africa (Fig. 4d). 
Strong MCSs also occur in the coastal areas of India, the 
South China Sea, mid-America and northern Australia. In 
terms of size, larger MCSs are more inclined to develop 
over ocean regions (Fig. 4e), such as the Bay of Bengal, the 

Table 2   Description of the output records for each tracked MCS

Variable Unit Description

ID The unique ID of a MCS
Lifetime h Persistence time of a MCS
gLat N Latitude of the geometric center of a MCS in degrees north
gLon E Longitude of the geometric center MCS in degrees east
wLat N Latitude of the centroid (weighted center) of a MCS in degrees north
wLon E Longitude of the centroid (weighted center) of a MCS in degrees east
Size km2 MCS area coverage
Eccentricity Ratio of the minor axis to the major axis of the ellipse that provides the best fit to a MCS
BTavg K Average BT of all pixels within a MCS
BTmin K Lowest BT of all pixels within a MCS
Time UTC​ MCS occurrence time
Speed km/h The propagation speed of a MCS from the present time step to the next time step
Direction degree Movement direction of a MCS from the present time step to the next time step, measured 

clockwise from the east

https://doi.pangaea.de/10.1594/PANGAEA.877914
https://doi.pangaea.de/10.1594/PANGAEA.877914
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northern Indian Ocean, the South China Sea, the northern 
Australian marginal sea and the sub-tropical South Pacific. 
The largest MCSs over the Bay of Bengal are generally 
associated with monsoon depressions, and can sometimes 
develop into synoptic scale systems accompanied by large 
stratiform precipitation areas (Houze and Churchill 1987). 
Another region with large MCSs is the southern part of the 
Amazon basin, consistent with the precipitation distribution 
shown in Fig. 4b, c.

Globally, MCSs that initiate over the ocean last longer 
than MCSs that develop over land (Fig. 4f). The charac-
teristics of MCS identified here are generally in line with 
previous surveys that have documented that MCSs that 
develop over oceans are larger, shallower and longer-
lasting than those over the continents (Mohr and Zipser 
1996; Laing and Fritsch 1997). Overall, the features of 
MCSs identified in this dataset are similar to those seen in 

previous studies, but the time period has been extended to 
over 20 years.

3.3 � Comparison of MCSs over land and ocean

The differences in the diurnal variations of convective sys-
tems over land and ocean areas have been noted in many 
previous studies (Chen and Houze 1997; Liu and Zipser 
2008; Inoue et al. 2009; Kolios and Feidas 2010). To bet-
ter characterize this distinction, we stratified the life cycle 
evolution of MCSs into four stages: initiation, maximum 
intensity, maximum spatial area coverage, and dissipation. 
The initiation stage represents the time when a MCS has 
just begun to develop and become identified; the maximum 
intensity stage refers to the time when the intensity of the 
MCS is greatest in terms of brightness temperature over its 
lifespan; the maximum spatial area coverage stage refers to 

Fig. 4   Spatial distribution of 
annual mean of a MCS occur-
rence frequency at a resolution 
of 1°; b precipitation from the 
monthly rainfall product of the 
Global Precipitation Climatol-
ogy Project (GPCP), version 
2.3, covering the same period; c 
precipitation during 1998–2008 
from the Tropical Rainfall 
Measuring Mission (TRMM) 
monthly precipitation 3B43 data 
set, version 7; d MCS average 
BT; e MCS size; and f MCS 
lifetime
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the time when the MCS reaches its largest horizontal size; 
and the dissipation stage refers to the last occurrence time 
of the MCS.

Here, we classify the continental and oceanic regions 
based on several well-known MCS genesis locations. 
Three continental regions are examined, specifically Africa 
(0–50E), the Maritime Continent (80–160E) and Amer-
ica (260-320E) with ocean grids excluded. Similarly, five 
ocean basins are examined, including the Indian Ocean 
(50–100E), the western Pacific (120–160E), the central 
Pacific (160–220E), the eastern Pacific (220– 280E), and 
the Atlantic (300–360E) with land grid points excluded. 
Figure 5 presents the regional boundaries separating MCS 
for different formation locations. The diurnal variation of 
the occurrence frequency of the four MCS stages over land 
and ocean areas are compared in Fig. 6. Note that the diur-
nal variation analysis is performed using 1-h intervals after 
converting the original data in Universal Time Coordinated 
(UTC) at 3-h intervals to local solar time (LST).

The MCSs over land display a prominent diurnal cycle 
with the highest initiation frequency in the afternoon 
(1500–1700 LST), followed by the maximum intensity in 
1–2 h at 1700–1800 LST (Fig. 6a, b). The maximum spatial 
coverage is achieved in another hour and lasts for 3–4 h 
before dissipating around midnight (Fig. 6c, d). It should 
be noted that the area coverage threshold used in the MCSs 
dataset is 5000 km2. In contrast, no distinct diurnal varia-
tion or preferred time exists for the initiation of MCSs over 
ocean areas. Oceanic MCSs generally reach their maxi-
mum intensity in the early morning (~ 0500–0600 LST). 
Interestingly, there are two peaks in the spatial coverage 
of oceanic MCSs, one occurring at 0500–0600 LST, and 
the other occurring in the afternoon at 1400–1600 LST. 
This double-peak feature has also been noted in previous 
studies (Dai 2001; Tsakraklides and Evans 2003). The Oce-
anic MCSs tend to dissipate more frequently in the late 
afternoon (1500–1700 LST). The distinct differences in 
the diurnal variation between the oceanic and land MCSs 

are closely related to the larger diurnal thermal variations 
over land than over the ocean. Over coastal areas and the 
Maritime Continent, the MCS activities are also strongly 
regulated by the local occurrence of sea/land breezes (Dai 
2001; Goyens et al. 2012). Overall, the average lifespan of 
the oceanic MCSs (12.4 h) is ~ 1 h longer than that of their 
land-based counterparts (11.3 h).

A detailed comparison of the diurnal variations of MCSs 
over the three land regions suggests subtle differences 
(Fig. 7). MCSs in Africa display the largest diurnal varia-
tions in terms of intensity and maximum coverage, followed 
by America and the Maritime Continent. MCSs also last 
slightly longer over Africa (11.7 h) than over the other two 
regions (11.1 h), and this might be partially related to the 
greater intensity of MCSs in Africa as noted above (Fig. 4). 
MCSs tend to initiate and develop ~ 1 h earlier in America 
than the other two regions. Consistently, MCSs over Africa 
reach their maximum intensity and size 1–2 h earlier than 
those over the other two regions. Finally, all of the MCSs 
over the three land regions show the highest frequency of 
dissipation at midnight (Fig. 7d).

Similarly, the MCSs over the five ocean regions are com-
pared in Fig. 8. Overall, the diurnal signals of MCSs over 
the five regions are close to each other. MCSs initiate in the 
western Pacific has a slightly different diurnal cycle with 
another initiation peak in the afternoon around 1500 LST. 
This feature may be related to the scattered islands located 
in the western Pacific, where the offshore MCSs might be 
influenced by the MCSs over the Maritime Continent.

The robust and evident diurnal variations in continental 
MCSs suggests that they respond quickly to diurnal solar 
heating and are susceptible to perturbations caused by their 
surroundings. MCSs that occur over oceans are possibly 
triggered by other mechanisms, such as equatorial waves and 
convective self-aggregation, and they are generally sustained 
by the presence of a warm moist boundary layer (Chen and 
Houze 1997).

Fig. 5   Region boundaries used for this study. The shaded areas with black dashed lines are the continental regions. The blue lines show the 
boundaries of oceanic area
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4 � Conclusions

A novel algorithm that combines the conventional area-over-
lapping method with a Kalman filter has been developed to 
track MCSs. Since the new approach takes into account the 
estimated location of potential MCSs through a KF-based 
method, it can track small and fast-moving MCSs commonly 
missed by the area-overlapping method. In addition, a flex-
ible interface has been designed so that users can apply their 
own criteria for the identification of MCSs. A parallel sys-
tem is used to process the large volumes of satellite data 

efficiently. The algorithm code is publically available and 
thus facilitates further refinement of the method.

A 20-year tropical MCS dataset has also been gener-
ated based on satellite data with a temporal resolution of 
3 h. This dataset builds upon earlier studies by substantially 
increasing the temporal scale and geographical coverage of 
the survey. A few examples are provided. The first one is the 
global distribution of occurrence frequency, intensity, and 
size of MCSs. It shows that MCSs occur more frequently 
and are more intense over land than over oceans. However, 
oceanic MCSs are generally larger and last longer than their 

Fig. 6   Diurnal variation of 
occurrence frequency of conti-
nental MCS and oceanic MCS 
in terms of a initiation time, 
b maximum intensity time, c 
maximum spatial area coverage 
time, and d dissipation time. 
All MCS records have been 
translated to local solar time 
(LST), and a 3-point smoothing 
has been applied
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land counterparts except in South America, India and some 
part of tropical Africa. Another example is the diurnal cycle 
of MCS. The MCSs over land have a prominent diurnal 
cycle; initiating frequently in mid to late afternoon, reach-
ing their maximum intensity and horizontal extent in the 
early evening, and dissipating around midnight. In contrast, 
oceanic MCSs have a much weaker diurnal cycle, with no 
preferred time for initiation. They generally reach their 
maximum intensity in the early morning. There are two 

peaks in the spatial extent, with a primary peak in the after-
noon and a secondary peak around the time of maximum 
intensity in the early morning. The preferred dissipation 
time is about an hour after the time of the primary peak in 
horizontal extent. The new MCS dataset also paves the way 
for improving the simulation of convective processes and 
the hydrological cycle in climate models. Finally, the MCS 
dataset presented here can be complemented with additional 
observations.

Fig. 7   Same as Fig. 6, but 
showing the three tropical conti-
nental regions
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Fig. 8   Same as Fig. 6, but 
showing the five tropical oce-
anic areas
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Appendix a: kalman Filter for MCS tracking

Using Kalman Filter for MCS tracking, we specify the location 
(xt, yt) to be the coordinate of the target MCS at time t , and 
(ẋt, ẏt) the corresponding velocity. The state ( st ) of the moving 
MCS can be summarized by

Its coordinate and velocity in the next time step is described 
by

where

and q ∼ N(0, Q) is the Gaussian noise with a covariance of 
Q . We can also observe the coordinate of the target MCS 
with some measurement noise. The measured coordinate is 
represented by

The relation between measured coordinate and real state is

where

and r ∼ N(0, R) is the Gaussian noise with covariance R.
In probabilistic terms, the overall model is

In practice using Kalman Filter to track the target includes 
two steps: first predicting the next coordinate, and then updat-
ing model parameters based on observation.

The Kalman Filter prediction step

Assume the posterior distribution of time t -1 is Gaussian

Then the predicted state at time t is

(3)st =

⎛⎜⎜⎜⎝

xt
yt
ẋt
ẏt

⎞⎟⎟⎟⎠

(4)st+1 = Ast + q

A =

⎛⎜⎜⎜⎝

1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
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(
xe
t

ye
t

)

(6)et = Hst + r
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(
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0 1 0 0

)

(7)p
(
st |st−1

)
= N(st|Ast−1, Q)

(8)p
(
et |st

)
= N(et|Hst, R)

(9)p
(
st |e1∶t−1

)
= N(st|mt−1, Pt−1)

where

and

thus, we can get the predicted coordinate (xt, yt) and veloc-
ity (ẋt, ẏt).

The Kalman Filter update step

Using the observation at time t , we can update the posterior 
distribution of coordinate (xt, yt) and velocity (ẋt, ẏt) by

where

which can be used recursively for the next time step.

Appendix b: algorithm implementation 
and parallel optimization

The MCSs tracking algorithm is implemented using MAT-
LAB and performed using parallel computation. Thus, it is 
efficient in addressing massive quantities of satellite data and 
significantly reduces the calculation time. The motivation for 
optimizing computing performance is to efficiently explore 
various parameter settings for different detection needs and 
to handle the massive input datasets that can be obtained 
from either satellite observations or numerical simulations.

We can estimate the computational complexity of each 
main component in the MCS tracking process using big O 
notation. For a tracking process covering T consecutive time 
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steps, let N represent the average number of potential MCS 
tracks in each time step, and let A represent the average area 
of each potential MCS in terms of the number of pixels. Then, 
for each time step, the computational complexity of the over-
lapping tracking algorithm is O(N2AlogA), that of the KF 
tracking algorithm is O(N2), and that of the Hungarian assign-
ing algorithm is O(N3). Therefore, the computational com-
plexity of the algorithm as a whole is O(T × (N3 + N2AlogA)).

Several computational performance optimization tech-
niques have been used in our system implementation. First, 
we vectorize the MATLAB program to improve its single-
thread performance. Second, we use parallelization with 
multiple threads during the detection stage to improve the 
single process performance. Third, and most importantly, 
we use a data parallelism strategy: for consecutive images 
covering T time steps, we use P processors to track MCSs 
simultaneously by slicing the whole-time period into P con-
secutive parts. For example, if we are tracking MCSs over 
20 years, we can use 240 processors, and each processor 
tracks MCSs in one month of the dataset. This data paral-
lelism is straightforward due to the temporally continuous 
nature of MCS tracks. The merging overhead is constant 
for each process and controllable according to the maxi-
mum possible time length of a MCS track. Thus, we can 
decrease the computational complexity on each processor 
to O(T×(N3 + N2AlogA) ÷ P).

We implemented the system on a distributed computer 
cluster with a number of processors equal to the total num-
ber of tracking months. Only several hours are required to 
track all MCSs in the global satellite dataset from 1985 to 
2008, depending on the different criteria chosen for the MCS 
identification. In addition, it is possible to further exploit 
the spatially continuous nature of MCS tracks to slice each 
image into several parts. These improvements have not 
been implemented in the current version of the system. The 
open-source MCS identification and tracking system that 
permits modification of the criteria for different research 
applications is available from https://doi.org/10.1594/PAN-
GAEA.877914. All the codes used in the analysis presented 
in this paper and in the production of the figures can be 
obtained from the same website.
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