Development and Validation of Data Assimilative East Sea Regional Ocean Model

Kyung-II Chang¹, Young Ho Kim², Gyun-Do Park¹, Young-Gyu Kim³

and the stand of the stand

¹Research Institute of Oceanography/School of Earth and Environmental Sciences, Seoul National University ²Coastal Engineering Research Department, Korea Ocean Research and Development Institute ³Agency for Defense Development

East Sea & Regional Ocean Model

Implementation of 3D-Var

Validation of 3D-Var system

Future Work : Ensemble Kalman Filter

Regional setting: East Sea

Area: 10⁶ km² Mean depth: ~1700 m Max. depth: ~ 4000 m

JB: Japan Basin UB: Ulleung Basin YB: Yamato Basin KS: Korea Strait TS: Tsugaru Strait SS: Soya Strait

Regional setting: East Sea

Regional setting: Circulation

Miniature Ocean

- Warm & cold water regions
- Subpolar front
- Deep water formation
- Deep circulation
- Double-gyre upper circulation
- Mesoscale eddies

Courtesy of Dr. J.J. Park

Regional setting: Circulation

Naganuma (1977)

Senjyu et al. (2005)

Regional setting: Water Masses

North Korean Cold Water (Coastal mode of the East Sea Intermediate Water)

Tsushima Current Water

Deep water masses (< 1°C)

Regional setting: Eddies

Ulleung Warm Eddy

A Miniature Ocean in Change

Levitus et al. (2005, GRL)

Brief History of International Programs

Before 1981 (1 st workshop)	Cooperative Study of the Kuroshio and Adjacent Regions (1965-1977)
1981-1992	Bilateral Collaboration (Korea/Tsushima Strait submarine cable voltage measurement)
1993-1997	CREAMS (Circulation Research of the East Asian Marginal Seas) Multi-national, multi-disciplinary collaboration
1998-2002	CREAMS II Japan/East Sea Program (USA/ONR)
2005	CREAMS/PICES Program under PICES (North Pacific Marine Science Organization) EAST-I Program (East Asian Seas Time-series: East/Japan Sea)

EAST(East Asian Seas Time-series) - I

International collaborations

Joint surveys along meridional and zonal baselines; material flux measurements across the Korea Strait; joint workshops

• Eulerian time-series measurements

Volume transport monitoring; HF radar; coastal buoy and Super-Station; Volunteer observing ships; Moored observations

Lagrangian measurements

Argo floats; Argos drifters; gliders

Research Tasks (EAST-I)

- Establishment of integrated ocean time-series system
- Ecosystem structure and variability in response to physical forcing
- Air-sea interaction, mixed layer dynamics and ecosystem response
- Monitoring and understanding the thermohaline circulation
- Carbon cycle and its response to climate change
- Role of straits in climate and ecosystem
- Physical-biological coupled modeling & future climate projection

Observation Systems in the East/Japan Sea

Highly-resolved Observation in the UB

ONR JES Program: URI, KORDI, KU 16 current meters, 23 pressure-gaugeequipped inverted echo sounders Daily T & dynamic fields between June

1999 and June 2001

Regional setting: Circulation & Variability (UB)

Mitchell et al. (2005); mean surface dynamic height

East Sea Regional Ocean Model (ESROM)

ESROM

Horizontal Domain (127.5 ~ 142.5 °E, 33.0 ~ 52.0 °N) Horizontal resolution: 0.06~0.1°(zonal), 0.1° (meridional) Modelling periods: 1993~2002

Based on GFDL MOM3 ✓Z-coordinate level model ✓ Parallel Processing (MPI) ✓Hydrostatic and Boussinesq approximations ♦ Open Boundary Conditions ✓ Barotropic velocity of inflow and outflow – Estimated from the transport estimated by submarine cable Baroclinic structure of inflow – historical hydrography Surface Boundary Conditions Heatflux - Calculated from meteorological variables by Bulk Formula ✓ Saltflux - Restoring to observed SSS ✓Windstress - ECMWF ♦ Features ✓ Explicit free surface

- ✓ Smagorinsky SGS for momentum
- ✓ Robert-Marshall Isoneutral SGS for tracers
- ✓KPP Vertical SGS Parameterization
- ✓Partial cell

Surface Boundary Condition

ESROM

Forced by monthly mean Surface Boundary Conditions and Open Boundary Conditions

Heatflux – Bulk Formula

$$Q_{net} = Q_{sw} - (Q_{sen} + Q_{lat} + Q_{lw})$$

$$Q_{sen} = \rho_a C_p^a C_h W_{10} (T_a - \theta_1)$$

$$Q_{lat} = \rho_a L_e C_E W_{10} (q_a - q_1)$$

$$Q_{lw} = -\varepsilon \sigma_{SB} \begin{cases} T_a^4 [0.39 - 0.05(e_a)^{0.5}] F(c_a)^{0.5} \\ + 4T_a^3 (\theta_1 - T_a)^{0.5} \end{cases}$$

Saltflux – Restoring to SSS

Large, William G., et. al., 1997, Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model : Annual-Mean Climatology, J. of Phys. Oceano., vol. 27, 2418-2447

Surface Boundary Condition

Windstress (ECMWF)

Open Boundary Conditions

ESROM

Radiation condition for the tracers and barotropic velocity

$$\frac{\partial \phi}{\partial t} + C_x \frac{\partial \phi}{\partial x} + C_y \frac{\partial \phi}{\partial y} = 0$$

$$C_x = \frac{\partial \phi}{\partial t} \frac{\partial \phi / \partial x}{(\partial \phi^2 / \partial x^2) + (\partial \phi^2 / \partial y^2)}$$

$$C_y = \frac{\partial \phi}{\partial t} \frac{\partial \phi / \partial y}{(\partial \phi^2 / \partial x^2) + (\partial \phi^2 / \partial y^2)}$$

>An additional nudging term is added for the influxes

$$\frac{\partial \phi}{\partial t} + C_x \frac{\partial \phi}{\partial x} + C_y \frac{\partial \phi}{\partial y} = -\frac{1}{\tau} \left(\phi - \phi^{ext} \right) \quad \tau = \tau_{out} \text{ if } C_x > 0$$
$$\tau = \tau_{in} \text{ and } C_x = C_y = 0 \text{ if } C_x < 0$$

➢Volume constraint

$$\frac{dV}{dt} = \frac{d}{dt} \left[\iiint_{V} dV \right] = \iint_{S_{b}} \vec{u} \cdot \vec{n} dS = \int_{L_{b}} \vec{u} \cdot \vec{n} dL$$

Marchesiello, P., McWilliams, J.C., and Shchepetkin, A. (2001) Open boundary conditions for long-term integration of regional oceanic models, *ocean modeling*, 3: 1-20.

Open Boundary Conditions

ESROM

Volume transport through the Korea Strait by a submarine cable between Pusan and Hamada

Theoretical Implementation Weaver and Courtier (2001)

A central task in the development of a statistical data assimilation
 Estimation of background error covariance

Size of background error covariance matrix
 ~5 x 10¹¹ (x 8 byte) = 4,000 Gbyte - neither estimated completely nor even stored explicitly
 Modeling B matrix as a sequence of operators.

Correlation modeling on the sphere using a generalized diffusion equation

Theoretical Implementation

Variational assimilation system with atmospheric models
 Background error covariance - Correlation functions in terms of a spherical harmonic expansion

It is not practical for the ocean due to lateral boundary

Assimilation system with oceanic model

Lorenc(1992, 1997) and Parrish et al.(1997) : Recursive grid-point filters (UKMO)

Derber and Rosati (1989) : Iterative Laplacian grid-point filter (NCEP)

- Use Very efficient and flexible for geographical variations
- -_- Limited flexibility in the shape of the correlation function

difficult to make anisotropic

□ Objectives : 3D univariate correlation models numerically efficient and sufficiently general; correlation functions with different shape (not just Gaussian), geographically variable length-scale, horizontal/vertical non-separability, and 3D anisotropy.

3D correlation model

Vertical correlation model

 $L_{R}^{v} = \{I - \sum_{r=1}^{R} \kappa_{r} \Delta t_{v} (-D^{v})^{r}\}^{M_{v}}$

, Diffusion equation

□ 3D covariance operator

$$L_{R}^{v}W_{v}^{-1}L_{P}^{h}W_{h}^{-1} = L_{R}^{v}{}^{1/2}W_{v}^{-1}L_{R}^{v}{}^{T/2}L_{P}^{h}{}^{1/2}W_{h}^{-1}L_{P}^{h}{}^{T/2}$$
$$= L_{R}^{v}{}^{1/2}L_{P}^{h}{}^{1/2}W_{h}^{-1}L_{P}^{h}{}^{T/2}L_{R}^{v}{}^{T/2}$$

$$C_{\alpha}^{1/2} = \Lambda L_{R}^{v^{1/2}} L_{P}^{h^{1/2}} W_{h}^{-1/2} , \quad C_{\alpha}^{T/2} = W_{h}^{-1} L_{P}^{h^{T/2}} L_{R}^{v^{T/2}}$$

\Box Sequence of operations for $C_{\alpha}^{1/2}$, Correlation model

- (i) Multiply each element of the input vector by the inverse of the square root of its associated volume element
- (ii) Perform Mh/2 integration steps of the horizontal diffusion equation
- (iii) Perform Mv/2 integration steps of the vertical diffusion equation
- (iv) multiply each element of the filtered vector by it corresponding normalization factor

Applied in reverse order for $C_{\alpha}^{T/2}$ with adjoint code of the diffusion equation

3D-Var Assim. Sys. For East Sea Regional Ocean Model

3-DVar

.............

Data distribution

Reanalysis with

- 1. SST Satellite image
- 2. Temperature of CREAMS(SNU)
- 3. Temp. of NFRDI
- 4. Temp. of JODC
- 5. Temp. taken by ARGO floats

Theoretical Implementation

Cooper and Haines (1996)

Surface data assimilation problem – Requirement of a rearrangement of water parcels in space without modifying their T,S properties or their potential vorticity.

Hydrostatic connection between Δp_{\star} and subsurface pressure updates,

 $\Delta p(z) = \Delta p_s + g \int_{-\infty}^{\infty} \Delta \rho dz$

If we set $\Delta p(z = -H) = 0$ as a bottom constraint, this will ensure that the bottom pressure and current distribution (through geostrophy) are not altered.

This bottom constraint gives the relationship

$$g\int_0^{-m}\Delta\rho dz = \Delta p_s$$

the change in weight of the entire water column should compensate for the change in surface pressure observed by the altimeter

Assimilating Sea Surface Height

Cooper and Haines (1996)

Using AVISO Product

Surface current and Height (Model)

Comparison with Observation (100m)

Validation

PIES measurement

Reanalysis Product by DA-ESROM

Comparison with Observation (100m)

Validation

RMS Error between PIES measurements and reanalysis

Spatio-temporal correlation

JUN

1999

AUG

DEC

OCT

FEB

APR

JUN

2000

AUG

OCT

DEC

FEB

APR

JUN

2001

Model & Data Comparison at 36.8°N (May, 2000) Validation

Strengthening of NKCC in summer

Validation

Reanalysis (DA-ESROM)

340m 340m 25 APR 199 24 JUN 1999 340m 340m 23 AUG 199 22 OCT 199

Salinity section (Observation)

Summer. (Kim and Kim, 1983)

Seasonal and Interannual variation

Validation

olume Transport of NKCC across N line

Interannulation variation of NKCC in March

Validation

Interannulation variation of NKCC in August

Validation

Q5

Future Work : Ensemble Kalman Filter

Introduction of Ensemble Kalman Filter

P.L. Houtekamer and Herschel L. Mitchell (2001)

 $P^{f}(t=i) \approx \Psi^{f}(t=i) \Psi^{f^{T}}(t=i) : [N \times N_{e}][N_{e} \times N]$ $x_{k}^{a} = x_{k}^{f} + \Psi^{f} \Psi^{f^{T}} H^{T} (H \Psi^{f} \Psi^{f^{T}} H^{T} + R)^{-1} (y - H x_{k}^{f}), k = 1, 2, ..., N_{e}$

Sensitivity Test (Twin Experiment)

Experiment Design

	Num. of Ens. Mem.	Horizotal Local.	Vertical Local.	Cov. Inflation	SST Assim.	SSH Assim.	etc
E32	32	0	0	Ο	0	0	Success
REF	16	0	0	0	0	0	Success
HNLC	16	Х	0	0	0	0	Overflow
VNLC	16	0	X	0	0	0	Unstable
CNINF	16	0	0	X	0	0	Success
ASSH	16	0	0	0	X	0	Success

Implementation and validation of 3D-Var System

Conclusion

- 1. New scheme for SSH Anomaly assimilation
- 2. Reproduction of the NKCC in summer
- 3. Reproduction of mesoscale eddies in Ulleung Basin
- 4. Comparison with PIES observation at 100m
 RMS error : 2.1°C
 - Correlation : 0.79

Spatio-temporal variation of the NKCC

Conclusion

Implementation of EnKF

- 1. Direct calculation of Background Error covariance
- 2. Based on nonlinear ocean model
- 3. Localization of background error covariance
- 4. Inflation of background error covariance

Thank you !