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Overview

Wind Waves : 

Wind-generated waves are the most visible signature of air-sea 
interaction and play a major influence on the momentum and energy 
transfer across the interface.

The system of atmosphere and ocean is not independent
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Overview

The mechanisms that generate these surface waves are still 
open issue due to

(1)  Difficulties in obtaining a dataset from laboratory and field  
measurements that records the time evolution of motions in 
both atmosphere and ocean domains

(2) Mathematical difficulties in dealing with highly turbulent 
flows over complex moving surfaces

(3) Lack of a suitable coupled model to simulate turbulent flows 
in both atmosphere and ocean simultaneously



The Purpose of this Research

Develop an air-water coupled model
Study the wind-wave generation processes (laboratory waves)

air
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Direct Numerical Simulation
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DNS numerically solves the Navier-Stokes equation subject to 
boundary conditions and hence such simulated flow fields contain no 
uncertainties other than numerical errors.



Spatial Differencing :
horizontal:   pseudo-spectral method

vertical:    second order finite differencing

Time Differencing :
second order  Runge-Kutta scheme

Grid System :
stretching grid system

high resolution near interface

Differencing Schemes
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Boundaries & Boundary Conditions

For

4 side walls :
periodic boundary conditions

lower boundary :
free-slip boundary conditions

upper boundary :
a constant velocity is imposed

interfacial boundary : (at air-water interface)



The conditions for interfacial boundary are

1. Velocity is continuous

2. Stress is continuous
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Governing Equations :

Interfacial Boundary Conditions : ( linearized )
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Problem Formulation of Two-Phase Coupled Flow

continuity of velocity

continuity of 
shear stress

continuity of 
normal stress

Kinematic free 
surface B. C.

( )wvuu ,,=



Interfacial boundary conditions are linearized

Limitation of the air-water coupled model  

only for small amplitude waves
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Mean wind stress at the interface

reached a statistically quasi-steady state 

t < 50 s    :    τs ~ constant

increases due to the growth of surface waves 

t > 50 s    :    τs increases with time



Wind-Wave Generation Processes (t=0~70 s)



When wave amplitude changes, what will be the 
behavior of the flow fields above and below the interface?

pwvu  , , , ↔η
(surface wave elevation)



Waves & Streamwise Velocity at the Interface
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in the Water
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At shear-dominated stage (t=16 s) :

the distribution of updrafts and downdrafts is irregular

w′

At wave-dominated stage (t=68 s) :

the vertical velocity field aligns with waves



Waves, 
Surface Pressure of the Air & Shear Stress Fluctuations
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Waves & Pressure Fluctuations (a vertical cross-section)

At early stage s 5.16~16=t



Waves & Pressure Fluctuations (a vertical cross-section)

At early stage : s 5.16~16=t

air

( ) ( ) -1cm .0 .,1,  : component   waveoneFor =yx kk



Waves & Pressure Fluctuations (a vertical cross-section)

At late stage s 51~5.50=t

Both domains are strongly influenced by waves



Waves & Pressure Fluctuations (a vertical cross-section)

At late stage : s 51~5.50=t

air
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Spectra of Wave Energy
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Some theoretical studies suggest that wave growth 
process can be separated into

1. Linear (waves grow slowly) 

2. Exponential (waves grow quickly)



Time Evolution of Wave Amplitude
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Time Evolution of Some Parameters at the Interface
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Waves Growth Types

Linear : t < 16 s

Exponential : t > 40 s
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Form Stress
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Some theoretical studies suggest form stress plays an important 
role in exponential wave growth stage
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Linear Growth Stage

Phillips (1957) :

the turbulence-induced pressure fluctuations in the air are 
responsible for the birth and early growth of waves 
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Exponential Growth Stage

Belcher & Hunt (1993) : (Non-separated sheltering mechanism)
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What influences wave growth?

1. Turbulence in the water

2. Surface tension

3. Domain size



Sensitivity Tests
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Sensitivity Tests 
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Summary
A new air- water coupled model is developed

The initial wind-wave generation processes is simulated

The characteristics of flow fields are different at early and 
late stages

Wave growth types : linear & exponential

The wavelengths found here (8-12 cm) are close to those 
found in laboratory at low wind speed.

Some of the simulated wave growth rates are close to 
previous studies’ results, but some of them are about 1~3 
times larger than their prediction or measurements.
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