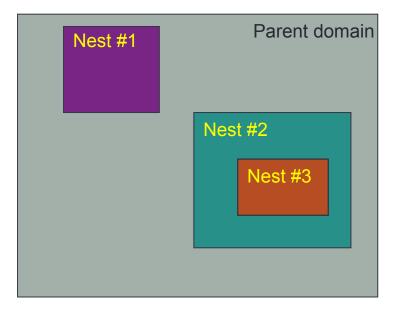
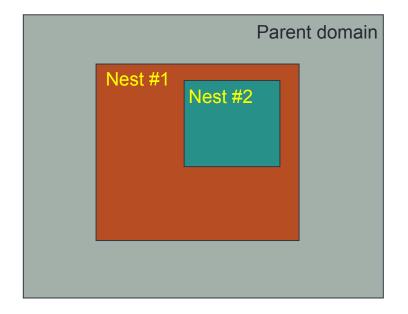
NESTING IN WRF

Kelly Keene August 2016

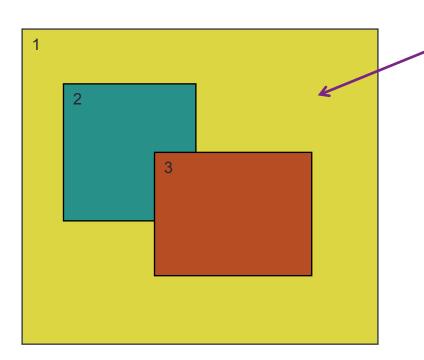
What is a nest?

- A *finer-resolution* domain used during a model run
- Covers a portion of the parent domain, and is fully surrounded by the parent domain
- Driven along its lateral boundaries by the parent domain
- Enables running at a higher-resolution without:
 - Uniformly high-resolution over a large domain VERY expensive
 - High resolution for a very small domain, with mismatched time and spatial lateral boundary conditions

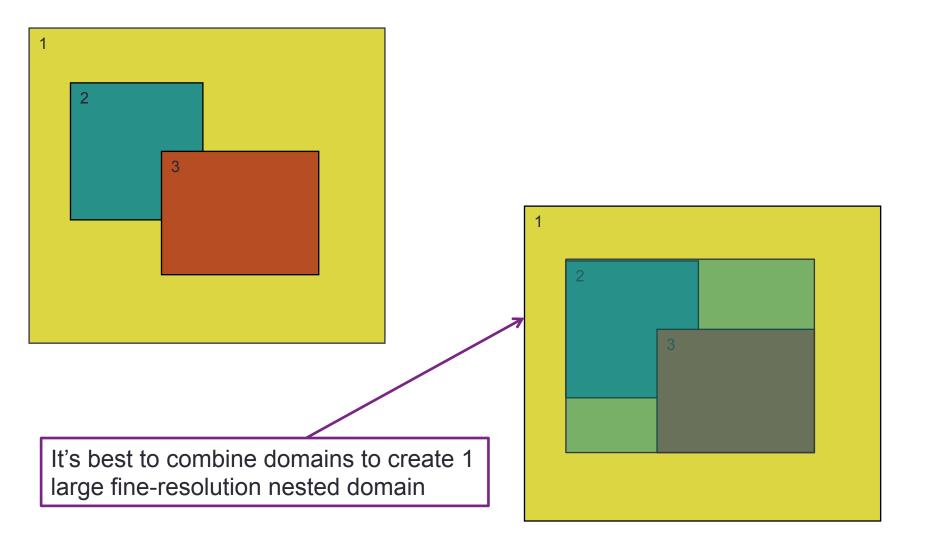

Types of Nesting


- Using a single input file (met_em.d0*)
 - Only met_em.d0* files for the first time period is used (for nests)
 - · All fields are interpolated from the coarse grid
 - Only recommended if using a flat surface (e.g., ocean)
- Using multiple input files
 - Each domain contains full input data files for every time period
- One-way/two-way nesting
 - Determined by the namelist parameter "feedback"
 - feedback = 0 (turned off/one-way); feedback = 1 (turned on/two-way)
- Specified move
 - Build WRF with "2=preset moves"
 - Originally used as a testing facility do not use
- Automatic move
 - Build WRF with "3=vortex following"
 - Ideal for cyclone tracking

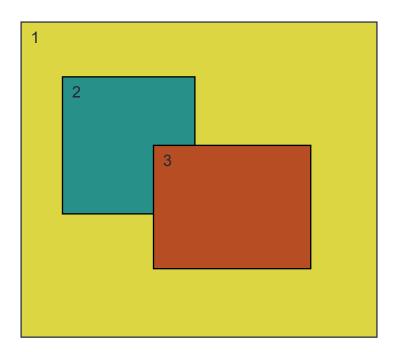
When Should I Use Nests?

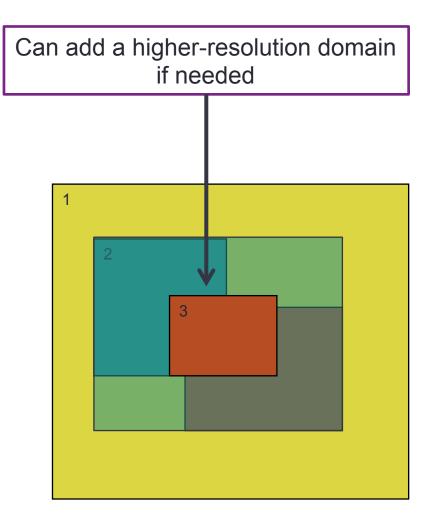

- Input data resolution is too coarse
- Would like to simulate localized convection, topography, and/or landuse-forced phenomena, etc.
- Would like to provide better boundary conditions for the area of interest
 - BC's for external sources are typically 3-6 hours
- Sufficient computing resources are not available

Nests that are OK



Nests that are NOT OK

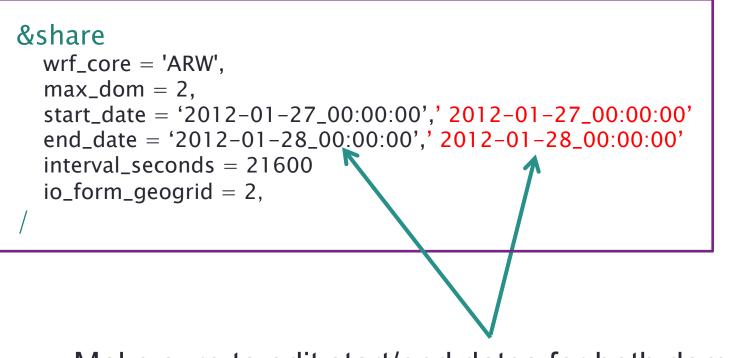



Child domains *may not* have overlapping points in the parent domain (1-way nesting excluded).

Nests that are NOT OK

Nests that are NOT OK

Nesting Set-up and Run


Compiling for Nesting

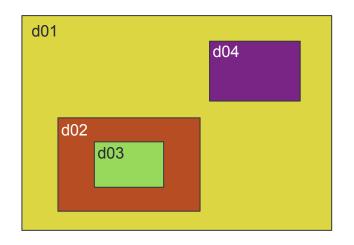
Pleas	e select	from	among th	e fol	llowing	Darwin	ARCH op	tions:
1.	(serial)	2.	(smpar)	3.	(dmpar)	4.	(dm+sm)	PGI (pgf90/pgcc)
5.	(serial)	6.	(smpar)	7.	(dmpar)	8.	(dm+sm)	INTEL (ifort/icc)
9.	(serial)	10.	(smpar)	11.	(dmpar)	12.	(dm+sm)	INTEL (ifort/clang)
13.	(serial)			14.	(dmpar)			GNU (g95/gcc)
15.	(serial)	16.	(smpar)	17.	(dmpar)	18.	(dm+sm)	GNU (gfortran/gcc)
19.	(serial)	20.	(smpar)	21.	(dmpar)	22.	(dm+sm)	GNU (gfortran/clang)
23.	(serial)			24.	(dmpar)			IBM (xlf90 r/cc)
25.	(serial)	26.	(smpar)	27.	(dmpar)	28.	(dm+sm)	PGI (pgf90/pgcc): -f90=pgf90
Enter selection [1-28] : 9								
Compile for nesting? (0=no nesting, 1=basic,)2=preset moves, 3=vortex following) [default 0]:								

Compile with nesting option (1=basic)

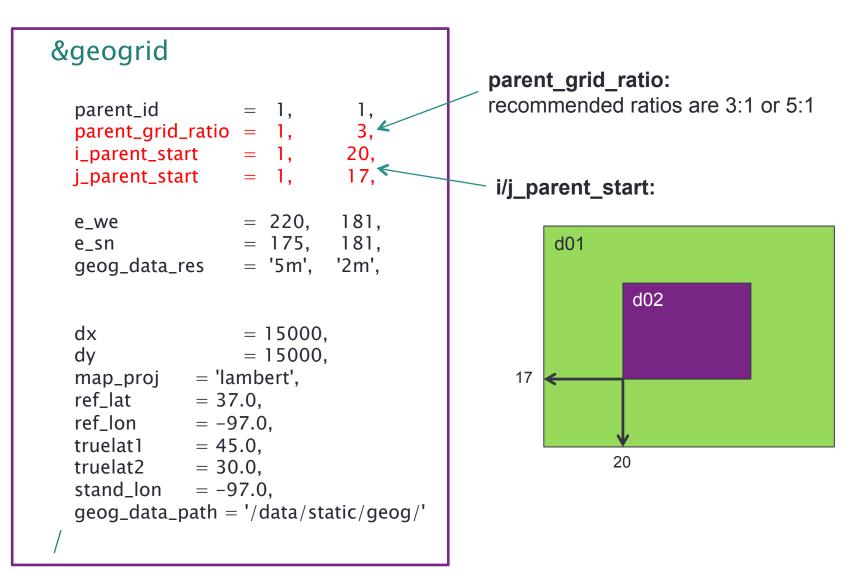
namelist.wps set-up: &share

To edit the namelist.wps file, make sure you are in the WPS/ directory

Make sure to edit start/end dates for both domains!


namelist.wps set-up: &geogrid &geogrid Used for nesting purposes? - What is the grid ratio for each nest? parent_id = 1, 1, 3, - Where is it located inside its parent? parent_grid_ratio = 1, $i_parent_start = 1, 20,$ $j_parent_start = 1,$ 17, = 220, 181, e_we = 175, 181, e_sn geog_data_res = '5m', '2m', Domain sizes: How many grid points Does the domain have? What is the grid spacing? dx = 15000.dy = 15000.map_proj = 'lambert', ref_lat = 37.0, ref_lon = -97.0, truelat1 = 45.0, truelat2 = 30.0, stand lon = -97.0. geog_data_path = '/data/static/geog/'

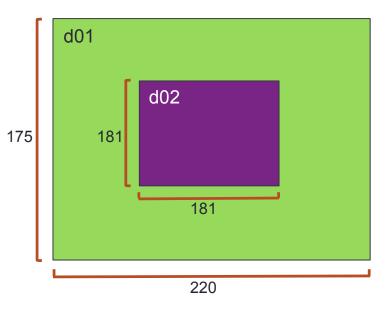
12


&geogrid

parent_id parent_grid_ratio i_parent_start j_parent_start	$ \begin{array}{c} = & 1, & 1, \\ = & 1, & 3, \\ = & 1, & 20, \\ = & 1, & 17, \end{array} $
e_we e_sn geog_data_res	= 220, 181, = 175, 181, = '5m', '2m',
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	2.0, 97.0, 5.0, 9.0,

parent_id: The domain # of the nest's parent

 $parent_id = 1, 1, 2, 1$



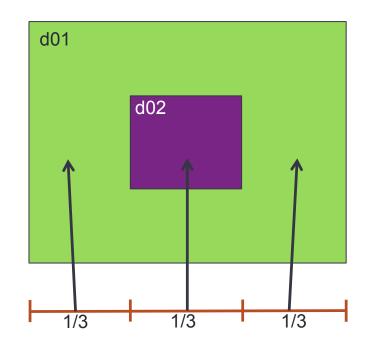
&geogrid

parent_id parent_grid_rat i_parent_start j_parent_start	= 1, 1, 1, io = 1, 3, = 1, 20, = 1, 17, 0	
<mark>e_we</mark> e_sn geog_data_res	= 220, 181, = 175, 181, = '5m', '2m',	
ref_lon = truelat1 = truelat2 = stand_lon =	37.0, -97.0, 45.0, 30.0,	/"

e_we and e_sn:

Each domain's full west-east and south-north dimensions (grid spaces)

Notes:


- Domains should be no smaller than about 100x100
- Avoid placing any boundaries over high terrain

&geogrid

$parent_id = 1, 1,$ $parent_grid_ratio = 1, 3,$ $i_parent_start = 1, 20,$ $j_parent_start = 1, 17,$	
e_we = 220, 181, e_sn = 175, 181,	
e_sn = 175, 181, geog_data_res = '5m', '2m',	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	/'
	-

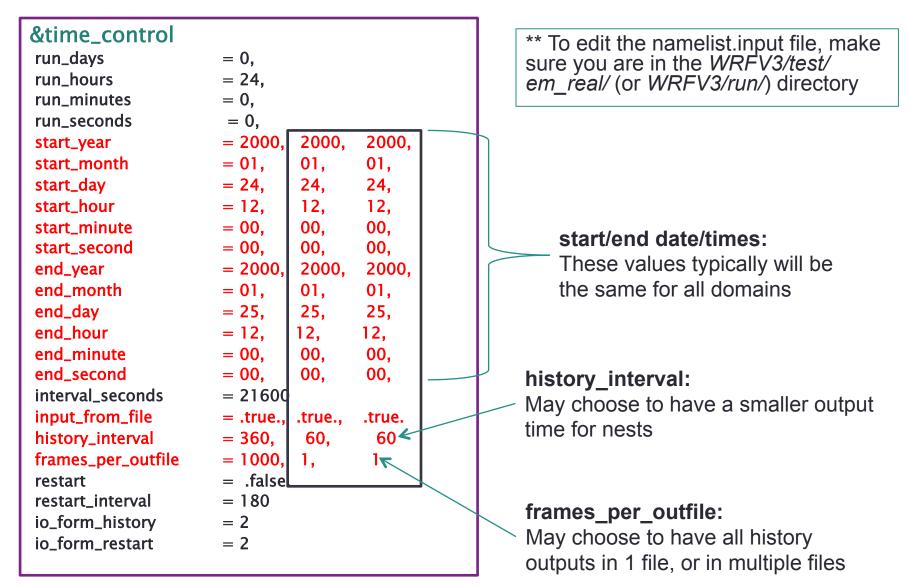
Mimimum distance between nest boundary and parent boundary:

- 4 grid cells
- need MUCH larger buffer zone

Good practice to have ~1/3 of coarse-grid surrounding each side of nest

&geogrid

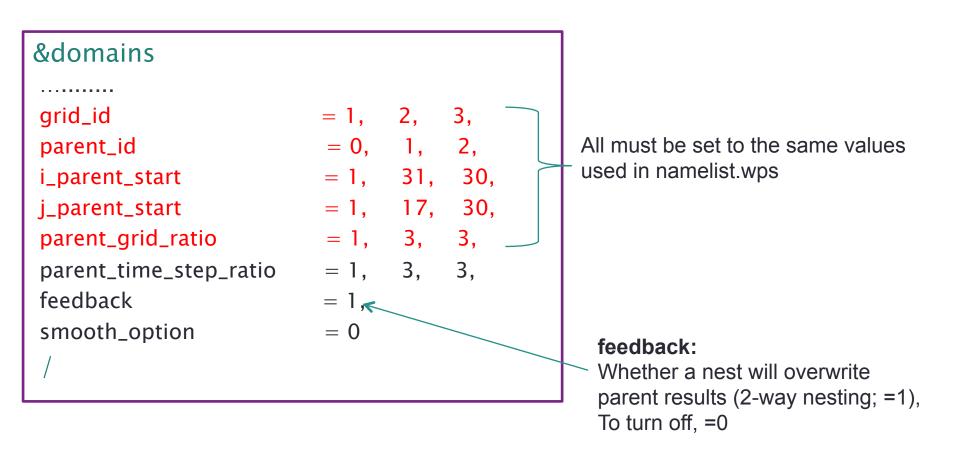
parent_id parent_grid_ratio i_parent_start j_parent_start	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
e_we e_sn geog_data_res	= 220, 181, = 175, 181, = '5m', '2m',
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	7.0, 97.0, 5.0, 9.0,


Dx and dy:

Only need the coarse domain Resolution. geogrid calculates the nest resolution(s) using "parent_grid_ratio"

*Note:

No changes need to be made to the &ungrib and &metgrid namelists for Nesting purposes


namelist.input set-up: &time_control

namelist.input set-up: &domains

r		1 .
&domains		max_dom:
time_step	= 180,	Activate nests - # of domains to run
time_step_fract_num	= 0,	VERY IMPORTANT!
time_step_fract_den	= 1,	
max_dom	= 2,	e_we and e_sn:
e_we	= 74, 112, 94,	should match namelist.wps values
e_sn	= 61, 97, 91,	
e_vert	= 30, 30, 30, ←	
p_top_requested	= 5000,	e_vert:
num_metgrid_levels	= 27,	All columns must have the same
num_metgrid_soil_levels	= 4,	value
dx	= 30000, 10000, 3333.33,	
dy	= 30000, 10000, 3333.33,	dx/dy:
grid_id	= 1, 2, 3,	must set values for each domain.
parent_id	= 0, 1, 2,	make sure values correspond with
i_parent_start	= 1, 31, 30,	"parent_grid_ratio"
j_parent_start	= 1, 17, 30,	- for fractional grid resolutions,
parent_grid_ratio	= 1, 3, 3,	use at least 2 decimal places
parent_time_step_ratio	= 1, 3, 3,	·
feedback	= 1,	
smooth_option	= 0	
/		

namelist.input set-up: &domains

namelist.input set-up: &physics

- You must use the same physics options for all domains for all schemes
 - Exception: cumulus_scheme (cu_physics) may need to be turned off for a nest that has a grid distance of only a few kilometers
- Use same values for physics calling frequency parameters
 - radt: radiation time step
 - cudt: cumulus scheme time step

Where do I start?

- Always start with a *namelist* template provided in the WRFV3/ test/em_real (or WRFV3/run/) directory
- Use documents/websites to guide your namelist modifications
 - WRFV3/run/README.namelist
 - Users' Guide, Chapter 5
 - http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/users_guide_chap5.htm
 - Namelist Best Practice web pages:
 - WPS: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wps.html</u>
 - WRFV3: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wrf.html</u>
- Not all namelists are functions of domains. If in doubt:
 - Check WRFV3/Registry/Registry.EM_COMMON or registry.io_boilerplate (grep for parameter names)
 - Check WRFV3/run/README.namelist (grep for parameter names)
 - Rule of thumb: If default namelist only has 1 column, don't add values for other columns!

Steps to run

- WPS: Identical to single domain run:
 - 1) Make sure you are in the WPS/ directory
 - 2) Make necessary changes to the namelist.wps file
 - 3) Run geogrid.exe, ungrib.exe, and metgrid.exe
 - ./geogrid.exe
 - ./ungrib.exe
 - ./metgrid.exe
- WRFV3: Identical to single domain run:
 - 1) Make sure you are in the *WRFV3/test/em_real* (or *WRFV3/run/*) *directory*
 - Move or link WPS output files (met_em.d0*) to your running directory

```
ln -sf ../../WPS/met_em* .
```

- 3) Edit *namelist.input* file for the appropriate grid and times of the case
- 4) Run initialization program: *mpirun -np n ./real.exe*
 - "n": number of processors used
- 5) Run model executable: mpirun -np n ./wrf.exe

Successful real.exe Run

- If *real.exe* was successful, you should see this at the end of your rsl.error.0000 file:
 - tail rsl.error.0000
 - SUCCESS COMPLETE REAL_EM INIT
- You should have these files in your running directory:
 - wrfbdy_d01 :
 - time level data at model's start time (includes all domains)
 - wrfinput_d01, wrfinput_d02,
 - time_level data at the lateral boundary for all times
 - 1 file per domain

Successful wrf.exe Run

- If wrf.exe was successful, you should see this at the end of your rsl.error.0000 file:
 - tail rsl.error.0000
 - SUCCESS COMPLETE WRF
- You should have these files in your running directory:
 - wrfout_d01_2005-08-28_00:00:00
 - wrfout_d02_2005-08-28_00:00:00
 - One for each domain, for each history time (depending on how you set 'frames_per_outfile')
 - wrfrst_d01_2005-08-28_00:00:00
 - wrfrst_d02_2005-08-28_00:00:00
 - If "restart_interval" is smaller than integration time

Questions?