

### **CICE in ROMS**



**Kate Hedstrom, UAF** 





#### **Wise Words from Hernan**

- All sea ice models are the same (in-breeding)
- All sea ice models are terrible
- Satellites measure ice concentration (more or less)
- We need to assimilate ice volume





#### **Outline**

- CICE pronunciation
- CICE components
  - Dynamics
  - Thermodynamics
- CICE user controls
  - Build script
  - ice\_in
- Examples
- Future directions





### **Pronunciation**

"We pronounce the model name as "sea ice", but there has been a small grass-roots movement underway to alter the model name's pronunciation..."

- English "sice"
- French "cease"
- Japanese "shii-aisu"
- Italian "chee-chay"
- Don't call it "sis"





## **Fundamental CICE Equation**

$$\frac{\partial g}{\partial t} = -\nabla \cdot (g\mathbf{u}) - \frac{\partial}{\partial h}(fg) + \psi$$

- $g(\mathbf{x}, h, t) \, dh$  is the ice thickness distribution function
- u is velocity vector
- f is the rate of thermodynamic ice growth
- $\psi$  is the ridging redistribution function





#### **Ice Thickness Distribution**

 Each cell has a number of different ice thicknesses (compiletime option) and open water







#### **Advection of Tracers**

 Each tracer is advected using one of these equations:

$$\frac{\partial (a_{in}T_n)}{\partial t} + \nabla \cdot (a_{in}T_n\mathbf{u}) = 0$$

$$\frac{\partial (v_{in}T_n)}{\partial t} + \nabla \cdot (v_{in}T_n\mathbf{u}) = 0$$

$$\frac{\partial (v_{sn}T_n)}{\partial t} + \nabla \cdot (v_{sn}T_n\mathbf{u}) = 0$$





## **Horizontal Transport**

- Upwind or incremental remapping, latter better for:
  - Conservation
  - Non-oscillatory
  - Monotonic
  - Second-order accurate
  - Efficient for many tracers





### **Incremental Remapping**



- Compute
   weights once
   per timestep
- Use on all tracers
- Some tracers numbered NICELYR\* NICECAT





### **Changes in Thickness Space**

- Like 2-D remapping, but in 1-D thickness space
- Compute thickness changes due to thermodynamics
- Remap the ice thickness categories
- Can't move more than one category per time-step





### **Mechanical Redistribution**

- Under convergence, convert thin ice to thick ice.
- Several choices to make, based on values of krdg\_partic, krdg\_redist and kstrength
- I have long been unhappy with kstrength=0 (Hibler, 1979)





### **Dynamics**

$$m\frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot \sigma + \vec{\tau}_a + \vec{\tau}_w - \hat{k} \times mf\mathbf{u} - mg\nabla H_{\circ}$$

#### Momentum equation:

- Internal ice forces
- Atmospheric stress
- Ocean stress
- Coriolis
- Sea-surface tilt





## Rheology

- EVP elastic-viscous-plastic
  - Emulates viscous-plastic rheology
- EAP elastic-anisotropic-plastic
  - New variable is local structure tensor
  - Rhombus-shaped floes
- Both use elastic waves for computational efficiency
- Ice strength, yield curve both part of rheology





#### **Landfast Ice**

- Lemieux parameterization via bottom stress
  - Deepest ice keels drag on the bottom and slow the pack ice
  - Parameterized ice thickness distribution –
     can be used with one ice class
  - Requires bathymetry
  - New to CICE





## **Thermodynamics**

- Three options
  - Zero-layer of Semtner
  - Bitz and Lipscomb with fixed salinity profile
  - "Mushy" with evolution of salinity profile
- Heat fluxes and temperature profiles are computed through the ice and snow
- Temperature-dependent specific heat for brine pockets (options #2 and #3)





## **Thermodynamics**

- Solve for each ice thickness category:
  - Surface temperature from surface heat fluxes: latent, sensible, longwave, shortwave
  - Heat flux through ice
  - Shortwave light penetration
    - Delta-Eddington
    - CCSM3 (implicit ponds)





#### **Melt Ponds**

- Three different schemes, all need delta-Eddington radiation
  - CCSM
  - Topographic
  - Level ice

$$\frac{\partial}{\partial t}(a_{pnd}a_i) + \nabla \cdot (a_{pnd}a_i\mathbf{u}) = 0$$

$$\frac{\partial}{\partial t}(h_{pnd}a_{pnd}a_i) + \nabla \cdot (h_{pnd}a_{pnd}a_i\mathbf{u}) = 0$$





### **Growth and Melt**

- Surface temperature must be freezing or colder
  - Extra enthalpy goes to melting
- Bottom temperature at freezing
  - Freeze or melt depending on balance of heat fluxes
- Frazil ice added to thinnest category or to whole cell
- Sublimate or deposit at surface
- Rebalance thicknesses after above





#### **More Thermo**

#### Lateral melt

- Adjust ice energy and fluxes
- Assume floe diameter of 300 m

#### Snow ice formation

- When snow weighs down ice to submerge ice surface
- Convert snow into ice





#### **Horizontal Grid**

- Arakawa B-grid
- Can create NetCDF grid file from ROMS grid with Python script
  - Uses the same grid
  - There's CICE code to read it...
  - NE convention (ROMS is SW)
- No nesting







### **Boundary Conditions**

- Place away from ice edge
- Can specify boundary values with "restore\_ice" option
  - Persistent initial conditions by default
  - Requires "restart\_ext" option
- Unreleased branch BC code?





### **Domain Decomposition**

- Set size of tiles at compile time
- All tiles numbered 1 to nx\_block, 1 to ny\_block (halo of 1)
- On each tile, each step, build list of cells with ice to compute over
- Load-balance by having similar amounts of ice on all tiles
- Tiles on global grids like slices of an orange (or tripole equivalent)





## **Exchange of Information**

#### ROMS to CICE

- Atmospheric forcing fields
- Frazil ice formed/available heat
- Surface ocean properties

#### CICE to ROMS

- Ice concentration
- Heat, salt and momentum fluxes
- ROMS must compute bulk fluxes over water and merge with fluxes from CICE





#### **Albedo**

- ROMS default has shortwave radiation being net into the water
  - Preprocess shortwave to account for albedo
- Ice/snow/melt ponds affect albedo, so incoming shortwave must be before albedo corrections
  - Don't preprocess shortwave
- Various options exist...





### **ROMS Albedo Options**

- ALBEDO\_CLOUD needs clouds
  - Water only
- ALBEDO\_CURVE function of latitude
  - Water only
- ALBEDO\_FILE
  - Ice and water
- Careful what you pass to CICE
  - And don't lie to it about dates because it only computes albedo when the sun shines





# **CICE Compile-time Options**

- SITE points to config in CICE's bld directory
- SYSTEM\_USERDIR where to put object files
- SRCDIR location of CICE code
- RES name of domain
- GRID dimensions of horizontal grid
- NTASK number of MPI processes





#### Continued....

- BLCKX size of tiles in i-direction
- BLCKY size of tiles in j-direction
- NICELYR number of vertical ice layers
- NSNWLYR number of vertical snow layers
- NICECAT number of ice thickness categories





### Continued....

- Tracer options
- BGC options
- IO\_TYPE none, pio or netcdf
- THRD for OpenMP





### ice\_in

- Run-time switches for many things (namelists)
  - Time variables
  - Grid setup
  - Restart
  - Dynamical choices (EVP vs EAP, etc)
  - Output control
- NPROCS must match compiled-in value!





### Sea Ice Options for ROMS

- Budgell ice presentation from two years ago
  - Be sure to get updates from fall 2015!
- CICE with fake coupler
  - Very slow
- Norwegian CICE-ROMS:
  - https://github.com/metno/metroms
- PolarCOAWST
- Hernan's? Sasha's?





### **Examples**

- Bering Sea
  - 10 km WRF grid
- Arctic2
  - Also known as PAROMS
- Both are ice-ocean only, using the fake coupler (so far)





### **Summary of Bering Sea**

- Start in
   September with
   no ice
- Watch ice grow and retreat with seasons
- WRF-ROMS for Nov 2011 storm (future plan)







#### **November 2011**







# **January 2012**







### **March 2012**







# **May 2012**







# **July 2012**







### **PAROMS**

- MERRA forcing
- Fresh water
  - ARDAT in Arctic
  - Dai et al.elsewhere
- GLORYS ice IC
- SODA/HYCOM
   IC/BCs







# January 1998







### **March 1998**







# **May 1998**







# **July 1998**







## September 1998







### **November 1998**







#### **Learn More**

- CICE comes with very complete manual in doc directory
- Many relevant papers in doc/PDF directory





## **Random Tips**

- Circumpolar considerations
  - GLOBAL PERIODIC
  - grid\_coords.F (floats, stations)
- Tell CICE the truth about the date
  - Albedo
  - Output filenames





#### **Future Plans**

- PolarCOAWST group activities
  - With WRF
  - With ice shelves
- CICE Consortium
  - Continue improvements to CICE





## **Biogeochemistry**

- Ice algae on the bottom, near oceanic source of nutrients
- A number of options described in the manual and other papers
- Not yet attached to an ocean BGC model – need to exchange flux\_bio array





#### **Aerosols**

- Particles landing on ice surface
- Two tracers per aerosol
  - Surface scattering layer (for radiation computation)
  - Snow or ice interior
- Rates of gain/loss: faero\_atm and faero\_ocn





### A few words about pyroms

```
Pyroms → PyCNAL

Python2 → Python3

Scrip → ESMF (coming...)
```

- Future improvements will be going into PyCNAL
- Both on github (ask me about git)







UNIVERSITY OF ALASKA
FAIRBANKS