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Latest Releases  
•  Revised wetting and drying algorithm: 

www.myroms.org/projects/src/ticket/648 
•  Replaced the SPLINES option: 

www.myroms.org/projects/src/ticket/681 
•  Corrected tracer horizontal diffusion algorithms: 

www.myroms.org/projects/src/ticket/689 
•  Added Red Tide Ecosystem Model (Gulf of Maine): 

www.myroms.org/projects/src/ticket/694 
•  Added Ensemble Kalman filter (EnKF) using the Data Assimilation 

Research Testbed (DART) developed at NCAR:
www.myroms.org/projects/src/ticket/697 

•  Added Staggered Grid (SGRID) data model conventions: 
www.myroms.org/projects/src/ticket/701 

•  Major Update to all 4D-Var algorithms: 
www.myroms.org/projects/src/ticket/702 

•  Added Quicksave output NetCDF file: 
www.myroms.org/projects/src/ticket/704 



SPLINES Option  

The SPLINES option was removed and replaced with following three 
options for more flexibility: 
 
•  SPLINES_VDIFF: conservative, parabolic splines reconstruction for 

vertical diffusion on active and passive tracers (step3d_t.f). 
•  SPLINES_VVISC: conservative, parabolic splines reconstruction for 

vertical diffusion on active and passive tracers (step3d_uv.f). 
•  RI_SPLINES: conservative, parabolic splines reconstruction for 

vertical velocity shear used in the Richardson Number 
(gls_corstep.F and my25_corstep.F) and Bulk Richardson Number 
(lmd_bkpp.F, lmd_skpp.F, and lmd_vmis.F). 

It was been reported that the SPLINES option violates the stress 
condition: 
        sustr = Akv * du/dz 
        svstr = Akv * dv/dz 
Check  https://www.myroms.org/projects/src/ticket/681 

      



ROMS Nesting is very unique: 
Inspiration 



Nesting Inspiration 

East-West Periodic North-South Periodic 



Nesting Inspiration 

Double Periodic 



Nesting Inspiration 

Double Periodic to Refinement 



Nested Grids: Refinement Class 

Ngrids = 2 
NestLayers = 2 
GridsInLayer = 1  1 
Ncontact = 2 
Donor Grid = blue 
Receiver Grid = red 

Ncontact=(Ngrids-1)*2  



Nesting Strategy 

 
•  The horizontal i- and j-ranges in the numerical kernel DO-loops are expanded 

to allow operations on various nested grid classes (refinement, mosaics, and 
composite) and nesting layers (refinement and composite combinations).  

 
    This facilitates the computation of any horizontal operators (advection, 

diffusion, gradient, etc.) in the nesting overlap regions and avoids the 
need for cumbersome lateral boundary conditions on the model variables 
and their associated flux/gradient values.  The advantage of this approach 
is that it is generic to any discrete horizontal operator. The overlap region 
is an extended section of the grid that overlays an adjacent grid. 

 
    The strategy is to compute the full horizontal operator at the contact 

points between nested grids instead of specifying boundary conditions. 



Nesting Strategy 

•  Nowadays, the lateral boundary conditions are set with logical switches (LBC 
structure) that depend on the nested grid. 

 
    This facilitates, in a generic way, the processing or not of lateral boundary 

conditions in applications with nested grids.  In nesting applications, the 
values at the lateral boundary points are computed directly in the overlap 
region by the numerical kernel. 

 
    The logical switches allow different lateral boundary conditions types 

between active (temperature and salinity) and passive (biology, sediment, 
inert, etc.) tracers. 

 
    The lateral boundary condition switches for each state variable and 

boundary edge are now specified in ROMS input script file, ocean.in. 



Nesting Strategy 

•  The nesting calls appear only in the main time-stepping routines, main2d or 
main3d.  The concept of nesting layers is introduced to allow applications with 
both composite grids and refinement grids.  Several routines in module 
nesting_mod  are used to process the information that it is required in the 
overlap region, what information needs to be exchanged from/to another grid, 
and when to exchange it. 

 
     In mosaic and composed grids, the information is exchanged between 

each sub-time step call in main2d or main3d.  For example, the data donor 
grid and the mosaic/composite grids need to sub-time step the 2D 
momentum equations before any of them start solving and coupling the 
3D momentum equations. 

 
     In refinement grids, the information at the contact points is processed at 

the end of the full time-step layer. The exchange between data donor and 
refinement grids is two-way. 



Tile I- and J-Ranges 

Istr  = BOUNDS(ng) % Istr  (tile) 
IstrB  = BOUNDS(ng) % IstrB  (tile) 
IstrM  = BOUNDS(ng) % IstrM  (tile) 
IstrP  = BOUNDS(ng) % IstrP  (tile) 
IstrR  = BOUNDS(ng) % IstrR  (tile) 
IstrT  = BOUNDS(ng) % IstrT  (tile) 
IstrU  = BOUNDS(ng) % IstrU  (tile) 

 
Iend  = BOUNDS(ng) % Iend  (tile) 
IendB  = BOUNDS(ng) % IendB  (tile) 
IendP  = BOUNDS(ng) % IendP  (tile) 
IendR  = BOUNDS(ng) % IendR  (tile) 
IendT  = BOUNDS(ng) % IendT  (tile) 
 
Jstr  = BOUNDS(ng) % Jstr  (tile) 
JstrB  = BOUNDS(ng) % JstrB  (tile) 
JstrM  = BOUNDS(ng) % JstrM  (tile) 
JstrP  = BOUNDS(ng) % JstrP  (tile) 
JstrR  = BOUNDS(ng) % JstrR  (tile) 
JstrT  = BOUNDS(ng) % JstrT  (tile) 
JstrV  = BOUNDS(ng) % JstrV  (tile) 
 
Jend  = BOUNDS(ng) % Jend  (tile) 
JendB  = BOUNDS(ng) % JendB (tile) 
JendP  = BOUNDS(ng) % JendP (tile) 
JendR  = BOUNDS(ng) % JendR (tile) 
JendT  = BOUNDS(ng) % JendT  (tile) 

Istrm3  = BOUNDS(ng) % Istrm3  (tile)  Istr-3 
Istrm2  = BOUNDS(ng) % Istrm2  (tile)  Istr-2 
Istrm1  = BOUNDS(ng) % Istrm1  (tile)  Istr-1 
IstrUm2  = BOUNDS(ng) % IstrUm2  (tile)  IstrU-2 
IstrUm1  = BOUNDS(ng) % IstrUm1  (tile)  IstrU-1 
 
Iendp1  = BOUNDS(ng) % Iendp1  (tile)  Iend+1 
Iendp2  = BOUNDS(ng) % Iendp2  (tile)  Iend+2 
Iendp2i  = BOUNDS(ng) % Iendp2i  (tile)  Iend+2  interior  
Iendp3  = BOUNDS(ng) % Iendp3  (tile)  Iend+3 
 
Jstrm3  = BOUNDS(ng) % Jstrm3  (tile)  Jstr-3 
Jstrm2  = BOUNDS(ng) % Jstrm2  (tile)  Jstr-2 
Jstrm1  = BOUNDS(ng) % Jstrm1  (tile)  Jstr-1 
JstrVm2 = BOUNDS(ng) % JstrVm2 (tile)  JstrV-2 
JstrVm1 = BOUNDS(ng) % JstrVm1 (tile)  JstrV-1 
       
Jendp1  = BOUNDS(ng) % Jendp1  (tile)  Jend+1 
Jendp2  = BOUNDS(ng) % Jendp2  (tile)  Jend+2 
Jendp2i  = BOUNDS(ng) % Jendp2i  (tile)  Jend+2  interior 
Jendp3  = BOUNDS(ng) % Jendp3  (tile)  Jend+3 

Suffix: 
 
R :  tile RHO-points  B :  Boundary tile  RHO- and V-points 
U :  tile U-points  M :  Boundary tile  PSI- and U-points 
V :  tile V-points  P :  Nesting  PSI-,  U-, and  V-points 

   T :  Nesting  RHO-points 

get_bounds.F 



If not nesting grids, the additional boundary tile indices associated with nesting 
are set to: 
     

 IstrT =  IstrR  full range, starting I-  direction (RHO-point) 
 IendT =  IendR  full range, ending  I-  direction (RHO-point)  
 JstrT =  JstrR  full range, starting J- direction (RHO-point) 
 JendT =  JendR  full range, ending  J- direction (RHO-point) 

 
 IstrP =  Istr  full range, starting I-  direction (PSI-, U-point) 
 IendP =  Iend  full range, ending  I-  direction (PSI-point) 
 JstrP =  Jstr  full range, starting J- direction (PSI-, V-point) 
 JendP =  Jend  full range, ending  J- direction (PSI-point) 

 
 IstrB =  Istr  interior range, starting I-  direction (RHO-, V-point) 
 IendB =  Iend  interior range, ending  I-  direction (RHO-, V-point) 
 JstrB =  Jstr  interior range, starting J- direction (RHO-, U-point) 
 JendB =  Jend  interior range, ending  J- direction (RHO-, U-point) 

 
 IstrM =  IstrU  interior range, starting I-  direction (PSI-, U-point) 
 JstrM =  JstrV  interior range, starting J- direction (PSI-, V-point) 

Boundary Tile Indices 



Boundary Tile Indices Locations 



Lateral Boundary Conditions Structure 
TYPE T_LBC 
        logical :: acquire  process lateral boundary data 
 
        logical :: Chapman_explicit 
        logical :: Chapman_implicit 
        logical :: clamped 
        logical :: closed 
        logical :: Flather 
        logical :: gradient 
        logical :: nested 
        logical :: nudging 
        logical :: periodic 
        logical :: radiation 
        logical :: reduced 
        logical :: Shchepetkin 
 END TYPE T_LBC 
 
 TYPE (T_LBC), allocatable :: LBC(:,:,:) 
 
For example, for free-surface gradient boundary conditions we have: 
 

 LBC(iwest,  isFsur, ng) % gradient 
 LBC(ieast,  isFsur, ng) % gradient 
 LBC(isouth, isFsur, ng) % gradient 
 LBC(inorth,  isFsur, ng) % gradient 



 For Example, in zetabc.F the western boundary conditions are: 
 

 IF ( DOMAIN (ng) % Western_Edge(tile) ) THEN 
 
   IF ( LBC (iwest, isFsur, ng) % radiation ) THEN 

   … 
  ELSE  IF ( LBC (iwest, isFsur, ng) % Chapman_explicit ) THEN 
   … 
  ELSE  IF ( LBC (iwest, isFsur, ng) % Chapman_implicit ) THEN 

                   … 
  ELSE  IF ( LBC (iwest, isFsur, ng) % clamped ) THEN 
   … 
  ELSE  IF ( LBC (iwest, isFsur, ng) % gradient ) THEN 
   … 
  ELSE  IF ( LBC (iwest, isFsur, ng) % closed ) THEN 

 
   DO  j = Jstr, Jend 
    IF ( LBC_apply (ng) % west ( j ) ) THEN                                    !  Allows both specified and 
     zeta ( Istr-1, j, kout )  = zeta ( Istr, j, kout )                            !  nested conditions 
    END  IF 
   END  DO 

 
  END  IF 

 
 END  IF 

Lateral Boundary Conditions Code 



Viscosity and Diffusion Sponges 

visc2_r(i,j) = visc_factor(i,j) * visc2_r(i,j) 
visc4_r(i,j) = visc_factor(i,j) * visc4_r(i,j) 

double visc_factor (eta_rho, xi_rho) ; 
              visc_factor:long_name = "horizontal viscosity sponge factor" ; 
              visc_factor:valid_min = 0. ; 
              visc_factor:coordinates = "lon_rho lat_rho" ; 

diff2(i,j,itrc) = diff_factor(i,j) * diff2(i,j,itrc) 
diff4(i,j,itrc) = diff_factor(i,j) * diff4(i,j,itrc) 

double diff_factor (eta_rho, xi_rho) ; 
              diff_factor:long_name = "horizontal diffusivity sponge factor" ; 
              diff_factor:valid_min = 0. ; 
              diff_factor:coordinates = "lon_rho lat_rho" ;  

The horizontal viscosity is now computed as: 

The horizontal mixing coefficients (visc_factor and diff_factor) can be set with analytical functions using 
ANA_SPONGE or can be read from input GRID NetCDF file variables: 

And the horizontal diffusion is now computed as: 

The Matlab script add_sponge.m can be used to append sponge variables to the application GRID NetCDF 
file 



Standard Input File: Rivers and Sponges 

Logical switches (TRUE/FALSE) to increase/decrease horizontal viscosity and/or diffusivity in specific 
areas of the  application domain (like sponge areas) for the desired application grid. 
 
      LuvSponge == 3*F                           ! horizontal momentum 
LtracerSponge == 2*F  2*F  2*F            ! temperature, salinity, inert 

Logical switches (TRUE/FALSE) to activate horizontal momentum transport point Sources/Sinks (like 
river runoff transport) and mass point Sources/Sinks (like volume vertical influx), [1:Ngrids]. 
 
             LuvSrc == 3*F                          ! horizontal momentum transport 
              LwSrc == 3*F                           ! volume vertical influx 
 
Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks (like river runoff) and to specify 
which tracer variables to consider: [1:NAT+NPT,Ngrids].  See glossary below for details. 
 
  LtracerSrc == 2*F 2*F 2*F                  ! temperature, salinity, inert 
 



Standard Input File: Climatology and Nudging 

Logical switches (TRUE/FALSE) to read and process climatology fields. See glossary below for details. 
 
          LsshCLM == 3*F                          ! sea-surface height 
           Lm2CLM == 3*F                          ! 2D momentum 
           Lm3CLM == 3*F                          ! 3D momentum 
 
      LtracerCLM == 2*F 2*F 2*F             ! temperature, salinity, inert 
 
 
 
Logical switches (TRUE/FALSE) to nudge the desired climatology field(s). If not analytical climatology 
fields, users need to turn ON the logical switches above to process the fields from the climatology 
NetCDF file that are needed for nudging. See glossary below for details. 
 
 LnudgeM2CLM == 3*F                          ! 2D momentum 
 LnudgeM3CLM == 3*F                          ! 3D momentum 
 
    LnudgeTCLM == 2*F 2*F 2*F             ! temperature, salinity, inert 



Nudging Coefficients Metadata 

double M2_NudgeCoef (eta_rho, xi_rho) ; 
               M2_NudgeCoef:long_name = "2D momentum inverse nudging coefficients" ; 
               M2_NudgeCoef:units = "day-1" ; 
               M2_NudgeCoef:coordinates = "xi_rho eta_rho " ; 
 
double M3_NudgeCoef (s_rho, eta_rho, xi_rho) ; 
               M3_NudgeCoef:long_name = "3D momentum inverse nudging coefficients" ; 
               M3_NudgeCoef:units = "day-1" ; 
               M3_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ; 
 
double tracer_NudgeCoef (s_rho, eta_rho, xi_rho) ; 
               tracer_NudgeCoef:long_name = "generic tracer inverse nudging coefficients” ; 
               tracer_NudgeCoef:units = "day-1" ; 
               tracer_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ; 
 
double temp_NudgeCoef (s_rho, eta_rho, xi_rho) ; 
               temp_NudgeCoef:long_name = "temp inverse nudging coefficients" ; 
               temp_NudgeCoef:units = "day-1" ; 
               temp_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ; 
 
double salt_NudgeCoef (s_rho, eta_rho, xi_rho) ; 
               salt_NudgeCoef:long_name = "salt inverse nudging coefficients" ; 
               salt_NudgeCoef:units = "day-1" ; 
               salt_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ;  

The inverse (1/time) nudging coefficients can be set with analytical functions using ANA_NUDGCOEF or 
can be read from new input NUDNAME NetCDF file variables: 



Nesting Configuration Types 

•  Composite Grids Super-Class:  
1.  Mosaic Grids Sub-Class  
2.  Composite Overlap Grids Sub-Class  
3.  Complex Estuary Composite Grids Sub-Class  
4.  Partial Boundary Composite Grids Sub-Class 

 
•  Refinement Grids Super-Class:  

1.  Single Refinement Sub-Class  
2.  Multiple Refinement Sub-Class  

 
•  Composite and Refinement Combination Super-Class:  

1.  Refinement and Partial Boundary Composite Sub-Class  
2.  Complex Estuary Refinement-Composite Sub-Class  



Nesting Classes 

Mosaic Composite Refinement 



Composite Grid Sub-Classes 



Refinement Grid Sub-Classes 



Composite-Refinement Grid Sub-Classes 



Contact Areas and Points 

Refinement-Composite Sub-Class 



Contact Areas and Points: Definitions 
Contact Region (cr): Extended section of the nested grid that overlays an adjacent nested grid. It is the 
region where the exchange of data between nested grids takes place. Since ROMS nesting is two-way 
by default, there are Ncontact=(Ngrids-1)*2 contact regions, where Ngrids is the number of nested 
grids and Ncontact is the number of contact regions in a nested application. There is a duality in ROMS 
grid nesting: data donor in one contact region and data receiver in its conjugate contact region. Each 
contact region has a donor and a receiver grid. 
 
Contact Points: Grid cells inside a contact region. Since ROMS governing equations are solved in an 
Arakawa C-grid, there are contact points at ρ-, Ψ-, u-, and v-points. However, the Ψ-points are only 
used to define the physical grid perimeters within a contact region. Since the C-grid stencil indices in 
ROMS are left-bottom ordered, there are always 4 ρ contact points at the left and bottom side of the 
contact region. On the other hand, there are 3 ρ contact points on the right and top side of the contact 
region. 
 
Donor Grid (dg): Data source grid in a nesting contact region. In refinement, the donor grid is used 
either to interpolate data from coarse to fine grid or to average data from fine to coarse grid (two-way 
feedback). 
 
Receiver Grid (rg): Data recipient grid in a nesting contact region. In refinement, the contact points of 
the finer receiver grid are interpolated using the coarser donor data from the grid cell containing the 
contact point. The interpolation can be linear or quadratic. In two-way nesting, when the coarse grid is 
the receiver grid the finer grid solution is averaged within the coarse cell. The coarse grid cell value is 
replaced with the finer grid averaged solution. This takes place in routine fine2coarse. 
 
Nesting Layer: Nested grids time-step arrangement and order for the ROMS numerical kernel. It is 
directly related to the time-step size (dt) for each nested grid. The number of nested layers, NestLayers, 
is specified in standard input script (ocean.in) and should be equal to the different number of time-step 
size (dt).  



Contact Regions and Contact Points 



 integer :: Ncontact   total number of contact regions 
 

 TYPE T_NGC 
 

      logical :: coincident   coincident donor and receiver points, p=q=0 
      logical :: interpolate   perform vertical interpolation 
   
      integer :: donor_grid   data donor grid number 
      integer :: receiver_grid   data receiver grid number 
      integer :: Npoints 
   
      integer, pointer :: Idg (:)   donor grid, cell  I-left index 
      integer, pointer :: Jdg (:)   donor grid, cell J-bottom index 
      integer, pointer :: Kdg (: , :)   donor grid, cell K-index 
   
      integer, pointer :: Irg (:)   receiver grid,  I-contact point 
      integer, pointer :: Jrg (:)   receiver grid, J-contact point 
     

real(r8), pointer :: Lweight (: , :)   linear horizontal weights 
                real(r8), pointer :: LweightUmasked (: , :)    linear horizontal unmasked weights (WET_DRY) 
 
                real(r8), pointer :: Qweight (: , :)   quadratic horizontal weights 
                real(r8), pointer :: QweightUmasked (: , :)   quadratic horizontal unmasked weights (WET_DRY)

   
                real(r8), pointer :: Vweight(: , : , :)   vertical  weights 
 
           END TYPE T_NGC 
 
           TYPE (T_NGC), allocatable :: Rcontact (:)   RHO-points 
           TYPE (T_NGC), allocatable :: Ucontact (:)   U-points 
           TYPE (T_NGC), allocatable :: Vcontact (:)   V-points 

Contact Points Structure 



Contact Points Interpolation 

Lweight (1, :) = (1 - p) * (1 - q) 
Lweight (2, :) =  p  * (1 - q) 
Lweight (3, :) =  p  *  q 
Lweight (4, :) = (1 - p) * q 

Value (Irg, Jrg)  =  Lweight (1,:) * F2d(Idg     ,Jdg    )+ 
                               Lweight (2,:) * F2d(Idg+1,Jdg     )+ 
                               Lweight (3,:) * F2d(Idg+1,Jdg+1)+ 
                               Lweight (4,:) * F2d(Idg     ,Jdg+1) 
 

If coincident contact points between data donor and data receiver grids,  p = q = 0.0, 
 

 Lweight (1, :) = 1.0    Value (Irg, Jrg)  =  Lweight (1, :) * F2d( Idg, Jdg ) 
 Lweight (3, :) = 0.0 
 Lweight (4, :) = 0.0 
 Lweight (5, :) = 0.0 

3    (Idg+1, Jdg+1, Kdg-1)  

2 

4 

(Idg, Jdg, Kdg-1)    1 Irg 

Jrg 

q 

1- q 

1- p 

p 

3    Kdg-1 

7     Kdg 

5 
6 

4 

1 2 

8 

5 

Suffix:  dg = donor grid 
              rg = receiver grid 



Contact Points: Quadratic Interpolation  

R- = 0.5 * p * (p-1) + α 
Ro = (1-p2)          - 2α 
R+ = 0.5 * p * (p+1) + α 

S- = 0.5 * q * (q-1) + α 
So = (1-q2)          - 2α 
S+ = 0.5 * q * (q+1) + α 

The finer grid variable, F, is interpolated from the coarser grid variable, C, as: 
 
F(Irg,Jrg) = S- * [R- * C(Idg-1,Jdg-1) + Ro * C(Idg,Jdg-1) + R+ * C(Idg+1,Jdg-1)]+ 
             So * [R- * C(Idg-1,Jdg  ) + Ro * C(Idg,Jdg  ) + R+ * C(Idg+1,Jdg  )]+ 
             S+ * [R- * C(Idg-1,Jdg+1) + Ro * C(Idg,Jdg+1) + R+ * C(Idg+1,Jdg+1)] 



Contact Points: Quadratic Interpolation  
For conservation and reversibility, we need: 

where r is the grid refinement factor. The reversibility condition is: 

Then, the quadratic interpolation weights are: 

Qweight (1, :) = R- * S- 
Qweight (2, :) = Ro * S- 
Qweight (3, :) = R+ * S- 
Qweight (4, :) = R- * So 
Qweight (5, :) = Ro * So 
Qweight (6, :) = R+ * So 
Qweight (7, :) = R- * S+ 
Qweight (8, :) = Ro * S+ 
Qweight (9, :) = R+ * S+ 

Σ Qweight(1:9,:) = 1 

Clark and Farley, 1984 



Nested Grids: Multi-Refinement Class 

Ngrids = 4 
NestLayers = 3 
GridsInLayer = 1  2  1 
Ncontact = 6 
Donor Grid = blue 
Receiver Grid = red 

Ngrids = 4 
NestLayers = 3 
GridsInLayer = 1  2  1 
Ncontact = 6 
Donor Grid = red 
Receiver Grid = green 



Nested Grids: Multi-Refinement Class 

Ngrids = 4 
NestLayers = 3 
GridsInLayer = 1  2  1 
Ncontact = 6 
Donor Grid = red 
Receiver Grid = blue 

Ngrids = 4 
NestLayers = 3 
GridsInLayer = 1  2  1 
Ncontact = 6 
Donor Grid = green 
Receiver Grid = red 



Realistic Nesting Configuration: US East Coast 
(Complex Estuary Refinement-Composite Sub-Class) 



Realistic Nesting Configuration: US East Coast 
(Complex Estuary Refinement-Composite Sub-Class) 

The coarser grid, ESPRESSO (130 x 82), has an average resolution of 
dx=7.5km, dy=5.8km. The nested grids (ρ-points mesh) are color coded 
for convenience to show the strategy used to better resolve the 
Delaware and Chesapeake Estuary Systems. The red and green are 
refinement grids whereas blue and magenta are composite grids. The 
refinement ratio is 1:7. An intermediate 1:7 refinement grid is created 
using Matlab script coarse2fine.m that included both the Delaware and 
Chesapeake Estuary Systems. Then, the Matlab script grid_extract.m is 
used to extract the Delaware Bay refinement grid (58 x 142) and 
Delaware River composite grid (42 x 55). Similarly, grid_extract.m is 
used to extract the Chesapeake Bay outer refinement grid (135 x 142) 
and Chesapeake Bay inner composite grid (233 x 212).  



Realistic Nesting Configuration: Gulf of Mexico 
(Multiple Refinement Sub-Class) 



Realistic Nesting Configuration: Gulf of Mexico 
(Multiple Refinement Sub-Class) 



Realistic Nesting Configuration: US West Coast 
(Telescoping Refinement Sub-Class) 

!

Modeling of Monterey Canyon 



!

Realistic Nesting Configuration: South China Sea 
(Multiple Refinement Sub-Class) 

Free-Surface 



!

Realistic Nesting Configuration: South China Sea 
(Multiple Refinement Sub-Class) 

Temperature 



Realistic Nesting Configuration: South China Sea 
(Multiple Refinement Sub-Class) 

Salinity 



Lake Jersey Test Case 



Lake Jersey 

Lake Jersey Grid Information 

Grid Mesh 
Size 

Refinement 
Factor 

Parent 
Imin 

Parent 
Imax 

Parent 
Jmin 

Parent 
Jmax 

Δx 
Δy Grid NetCDF File 

a 100x80x8 - - - - - 500.0 m lake_jersey_grd_a.nc 

b 66x99x8 1:3 from a 9 31 12 45 166.6 m lake_jersey_grd_b.nc 

c 120x130x8 1:5 from a 34 58 19 45 100.0 m lake_jersey_grd_c.nc 

d 114x60x8 1:3 from a 50 88 50 70 166.6 m lake_jersey_grd_d.nc 

e 132x60x8 1:3 from d 36 80 20 40 55.5 m lake_jersey_grd_e.nc 



Lake Jersey 



Lake Jersey: Case AB 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case AB 
One-Way Two-Way 

Free-Surface Free-Surface 

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity 



Lake Jersey: Case AC 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case AC 
One-Way Two-Way 

Free-Surface Free-Surface 

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity 



Lake Jersey: Case AD 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case AD 
One-Way Two-Way 

Free-Surface Free-Surface 

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity 



Lake Jersey: Case ABD 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case ABD 
One-Way Two-Way 

Free-Surface Free-Surface 

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity 



Lake Jersey: Case ADE 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case ADE 
One-Way Two-Way 

Free-Surface Free-Surface 

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity 



Lake Jersey: Case ABDC 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case ABDC 
One-Way Two-Way 

Free-Surface 

2D Relative Vorticity 

Free-Surface 

2D Relative Vorticity X 10-4 X 10-4 



Lake Jersey: Case ACDE 
One-Way Two-Way 

Temperature 

Salinity 

Temperature 

Salinity 



Lake Jersey: Case ACDE 
One-Way Two-Way 

Free-Surface 

2D Relative Vorticity 

Free-Surface 

2D Relative Vorticity X 10-4 X 10-4 



•  DOPPIO: 242x106 (~7 km) 
•  Chesapeake-Delaware grid (1:5 ratio): 215x205 (~1.8 km) 

•  Chesapeake-Delaware grid (1:7 ratio): 303x289 (~1.2 km) 
•  PIONEER (Hudson Canyon) grid (1:3 ratio): 204x216 (~2.3 km) 

•  ARRAY (Pioneer Data Array) grid (1:3; 1:9 ratio): 210x195 (~1 km) 

Mid-Atlantic Bight Grids 



DOPPIO Refinement Grids 

Bathymetry (m) 



PIONEER Data Array Observations 

Initial Surface Temperature (01-Jan-2014) 



DOPPIO Sponge Areas 

Same Reynolds Number for all Grids (U Δx/ν): 
 
VISC2 == 90.0d0  30.0d0  10.0d0             (m2/s) 
 TNU2 == 2*27.0d0  2*9.0d0    2*3.0d0       (m2/s) 
 
Time stepping (Δt): 
 
       DT == 180.0d0  90.0d0   45.0d0     (3/1.5/0.75 minute step) 



 Two-Way DOPPIO-PIONEER-ARRAY 
(1:3 Refinement) 

Free-Surface 



Two-Way DOPPIO-PIONEER-ARRAY 
(1:3 Refinement) 

Surface Temperature (Celsius) 



Two-Way DOPPIO-PIONEER-ARRAY 
(1:3 Refinement) 

Surface Salinity 



Two-Way DOPPIO-PIONEER-ARRAY 
(1:3 Refinement) 

Surface Relative Vorticity (1/s) 



https://www.myroms.org/wiki/index.php/Matlab_Scripts 



Heterogeneous Model Nesting 
(One-Way Open boundary Conditions)  



Nesting Remarks  

•  ROMS nesting capabilities are unique and allow complex 
estuary and coastal configurations with unlimited number 
of composite and refined grids 

•  Coincident composite and mosaic grids produce identical 
solutions when compared to one large continuous grid 

•  Nowadays, both one-way and two-way nesting work well 
•  Placement of nested grids is application dependent and 

subject to geometrical and dynamical constrains 
•  The two-way exchange of information fine-to-coarse in grid 

refinement applications is expensive.  We are exploring 
strategies to minimize computational cost. 



Upcoming  

•  Efficient two-way MPI-communications for the fine-to-
coarse nesting step 

•  Heterogeneous models nesting: one-way open boundary 
conditions (NetCDF files or ESMF/MCT coupling)  

•  Multiple model coupling with ESMF (Earth System Modeling 
Framework, Version 7) including the NUOPC (National 
Unified Operational Prediction Capability) layer 

•  Fully coupled ROMS and COAMPS dynamics via ESMF and 
NUOPC 

•  Fully coupled ROMS and COAMPS data assimilation (EnKF 
and 4D-Var) 

•  4D-Var data assimilation within nested grids 
•  Overhaul of ROMS plotting package (NCAR GKS library) to 

include nesting grids  
•  Release of ROMS 4.0 
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