
COAWST Modeling System Training
WHOI, Woods Hole, MA

August 16, 2016

Some ROMS Algorithms

Hernan G. Arango
DMCS, Rutgers University

ROMS VIP’S

Andrew M. Moore
U. California Santa Cruz
Adjoint-Based Algorithms

Alexander F. Shchepetkin
U. California Los Angeles
Nonlinear Kernel

John C. Warner
USGS, WHOI
Sediment Transport, Nesting
COAWST

David J. Robertson
IMCS, Rutgers University
Cyber Infrastructure

Kate S. Hedstrom
U. Alaska, Fairbanks
User Community Forum

John L. Wilkin
IMCS, Rutgers University
Supreme Beta Tester

Latest Releases
•  Revised wetting and drying algorithm:

www.myroms.org/projects/src/ticket/648
•  Replaced the SPLINES option:

www.myroms.org/projects/src/ticket/681
•  Corrected tracer horizontal diffusion algorithms:

www.myroms.org/projects/src/ticket/689
•  Added Red Tide Ecosystem Model (Gulf of Maine):

www.myroms.org/projects/src/ticket/694
•  Added Ensemble Kalman filter (EnKF) using the Data Assimilation

Research Testbed (DART) developed at NCAR:
www.myroms.org/projects/src/ticket/697

•  Added Staggered Grid (SGRID) data model conventions:
www.myroms.org/projects/src/ticket/701

•  Major Update to all 4D-Var algorithms:
www.myroms.org/projects/src/ticket/702

•  Added Quicksave output NetCDF file:
www.myroms.org/projects/src/ticket/704

SPLINES Option

The SPLINES option was removed and replaced with following three
options for more flexibility:

•  SPLINES_VDIFF: conservative, parabolic splines reconstruction for

vertical diffusion on active and passive tracers (step3d_t.f).
•  SPLINES_VVISC: conservative, parabolic splines reconstruction for

vertical diffusion on active and passive tracers (step3d_uv.f).
•  RI_SPLINES: conservative, parabolic splines reconstruction for

vertical velocity shear used in the Richardson Number
(gls_corstep.F and my25_corstep.F) and Bulk Richardson Number
(lmd_bkpp.F, lmd_skpp.F, and lmd_vmis.F).

It was been reported that the SPLINES option violates the stress
condition:
 sustr = Akv * du/dz
 svstr = Akv * dv/dz
Check https://www.myroms.org/projects/src/ticket/681

ROMS Nesting is very unique:
Inspiration

Nesting Inspiration

East-West Periodic North-South Periodic

Nesting Inspiration

Double Periodic

Nesting Inspiration

Double Periodic to Refinement

Nested Grids: Refinement Class

Ngrids = 2
NestLayers = 2
GridsInLayer = 1 1
Ncontact = 2
Donor Grid = blue
Receiver Grid = red

Ncontact=(Ngrids-1)*2

Nesting Strategy

•  The horizontal i- and j-ranges in the numerical kernel DO-loops are expanded

to allow operations on various nested grid classes (refinement, mosaics, and
composite) and nesting layers (refinement and composite combinations).

 This facilitates the computation of any horizontal operators (advection,

diffusion, gradient, etc.) in the nesting overlap regions and avoids the
need for cumbersome lateral boundary conditions on the model variables
and their associated flux/gradient values. The advantage of this approach
is that it is generic to any discrete horizontal operator. The overlap region
is an extended section of the grid that overlays an adjacent grid.

 The strategy is to compute the full horizontal operator at the contact

points between nested grids instead of specifying boundary conditions.

Nesting Strategy

•  Nowadays, the lateral boundary conditions are set with logical switches (LBC
structure) that depend on the nested grid.

 This facilitates, in a generic way, the processing or not of lateral boundary

conditions in applications with nested grids. In nesting applications, the
values at the lateral boundary points are computed directly in the overlap
region by the numerical kernel.

 The logical switches allow different lateral boundary conditions types

between active (temperature and salinity) and passive (biology, sediment,
inert, etc.) tracers.

 The lateral boundary condition switches for each state variable and

boundary edge are now specified in ROMS input script file, ocean.in.

Nesting Strategy

•  The nesting calls appear only in the main time-stepping routines, main2d or
main3d. The concept of nesting layers is introduced to allow applications with
both composite grids and refinement grids. Several routines in module
nesting_mod are used to process the information that it is required in the
overlap region, what information needs to be exchanged from/to another grid,
and when to exchange it.

 In mosaic and composed grids, the information is exchanged between

each sub-time step call in main2d or main3d. For example, the data donor
grid and the mosaic/composite grids need to sub-time step the 2D
momentum equations before any of them start solving and coupling the
3D momentum equations.

 In refinement grids, the information at the contact points is processed at

the end of the full time-step layer. The exchange between data donor and
refinement grids is two-way.

Tile I- and J-Ranges

Istr = BOUNDS(ng) % Istr (tile)
IstrB = BOUNDS(ng) % IstrB (tile)
IstrM = BOUNDS(ng) % IstrM (tile)
IstrP = BOUNDS(ng) % IstrP (tile)
IstrR = BOUNDS(ng) % IstrR (tile)
IstrT = BOUNDS(ng) % IstrT (tile)
IstrU = BOUNDS(ng) % IstrU (tile)

Iend = BOUNDS(ng) % Iend (tile)
IendB = BOUNDS(ng) % IendB (tile)
IendP = BOUNDS(ng) % IendP (tile)
IendR = BOUNDS(ng) % IendR (tile)
IendT = BOUNDS(ng) % IendT (tile)

Jstr = BOUNDS(ng) % Jstr (tile)
JstrB = BOUNDS(ng) % JstrB (tile)
JstrM = BOUNDS(ng) % JstrM (tile)
JstrP = BOUNDS(ng) % JstrP (tile)
JstrR = BOUNDS(ng) % JstrR (tile)
JstrT = BOUNDS(ng) % JstrT (tile)
JstrV = BOUNDS(ng) % JstrV (tile)

Jend = BOUNDS(ng) % Jend (tile)
JendB = BOUNDS(ng) % JendB (tile)
JendP = BOUNDS(ng) % JendP (tile)
JendR = BOUNDS(ng) % JendR (tile)
JendT = BOUNDS(ng) % JendT (tile)

Istrm3 = BOUNDS(ng) % Istrm3 (tile) Istr-3
Istrm2 = BOUNDS(ng) % Istrm2 (tile) Istr-2
Istrm1 = BOUNDS(ng) % Istrm1 (tile) Istr-1
IstrUm2 = BOUNDS(ng) % IstrUm2 (tile) IstrU-2
IstrUm1 = BOUNDS(ng) % IstrUm1 (tile) IstrU-1

Iendp1 = BOUNDS(ng) % Iendp1 (tile) Iend+1
Iendp2 = BOUNDS(ng) % Iendp2 (tile) Iend+2
Iendp2i = BOUNDS(ng) % Iendp2i (tile) Iend+2 interior
Iendp3 = BOUNDS(ng) % Iendp3 (tile) Iend+3

Jstrm3 = BOUNDS(ng) % Jstrm3 (tile) Jstr-3
Jstrm2 = BOUNDS(ng) % Jstrm2 (tile) Jstr-2
Jstrm1 = BOUNDS(ng) % Jstrm1 (tile) Jstr-1
JstrVm2 = BOUNDS(ng) % JstrVm2 (tile) JstrV-2
JstrVm1 = BOUNDS(ng) % JstrVm1 (tile) JstrV-1

Jendp1 = BOUNDS(ng) % Jendp1 (tile) Jend+1
Jendp2 = BOUNDS(ng) % Jendp2 (tile) Jend+2
Jendp2i = BOUNDS(ng) % Jendp2i (tile) Jend+2 interior
Jendp3 = BOUNDS(ng) % Jendp3 (tile) Jend+3

Suffix:

R : tile RHO-points B : Boundary tile RHO- and V-points
U : tile U-points M : Boundary tile PSI- and U-points
V : tile V-points P : Nesting PSI-, U-, and V-points

 T : Nesting RHO-points

get_bounds.F

If not nesting grids, the additional boundary tile indices associated with nesting
are set to:

 IstrT = IstrR full range, starting I- direction (RHO-point)
 IendT = IendR full range, ending I- direction (RHO-point)
 JstrT = JstrR full range, starting J- direction (RHO-point)
 JendT = JendR full range, ending J- direction (RHO-point)

 IstrP = Istr full range, starting I- direction (PSI-, U-point)
 IendP = Iend full range, ending I- direction (PSI-point)
 JstrP = Jstr full range, starting J- direction (PSI-, V-point)
 JendP = Jend full range, ending J- direction (PSI-point)

 IstrB = Istr interior range, starting I- direction (RHO-, V-point)
 IendB = Iend interior range, ending I- direction (RHO-, V-point)
 JstrB = Jstr interior range, starting J- direction (RHO-, U-point)
 JendB = Jend interior range, ending J- direction (RHO-, U-point)

 IstrM = IstrU interior range, starting I- direction (PSI-, U-point)
 JstrM = JstrV interior range, starting J- direction (PSI-, V-point)

Boundary Tile Indices

Boundary Tile Indices Locations

Lateral Boundary Conditions Structure
TYPE T_LBC
 logical :: acquire process lateral boundary data

 logical :: Chapman_explicit
 logical :: Chapman_implicit
 logical :: clamped
 logical :: closed
 logical :: Flather
 logical :: gradient
 logical :: nested
 logical :: nudging
 logical :: periodic
 logical :: radiation
 logical :: reduced
 logical :: Shchepetkin
 END TYPE T_LBC

 TYPE (T_LBC), allocatable :: LBC(:,:,:)

For example, for free-surface gradient boundary conditions we have:

 LBC(iwest, isFsur, ng) % gradient
 LBC(ieast, isFsur, ng) % gradient
 LBC(isouth, isFsur, ng) % gradient
 LBC(inorth, isFsur, ng) % gradient

 For Example, in zetabc.F the western boundary conditions are:

 IF (DOMAIN (ng) % Western_Edge(tile)) THEN

 IF (LBC (iwest, isFsur, ng) % radiation) THEN

 …
 ELSE IF (LBC (iwest, isFsur, ng) % Chapman_explicit) THEN
 …
 ELSE IF (LBC (iwest, isFsur, ng) % Chapman_implicit) THEN

 …
 ELSE IF (LBC (iwest, isFsur, ng) % clamped) THEN
 …
 ELSE IF (LBC (iwest, isFsur, ng) % gradient) THEN
 …
 ELSE IF (LBC (iwest, isFsur, ng) % closed) THEN

 DO j = Jstr, Jend
 IF (LBC_apply (ng) % west (j)) THEN ! Allows both specified and
 zeta (Istr-1, j, kout) = zeta (Istr, j, kout) ! nested conditions
 END IF
 END DO

 END IF

 END IF

Lateral Boundary Conditions Code

Viscosity and Diffusion Sponges

visc2_r(i,j) = visc_factor(i,j) * visc2_r(i,j)
visc4_r(i,j) = visc_factor(i,j) * visc4_r(i,j)

double visc_factor (eta_rho, xi_rho) ;
 visc_factor:long_name = "horizontal viscosity sponge factor" ;
 visc_factor:valid_min = 0. ;
 visc_factor:coordinates = "lon_rho lat_rho" ;

diff2(i,j,itrc) = diff_factor(i,j) * diff2(i,j,itrc)
diff4(i,j,itrc) = diff_factor(i,j) * diff4(i,j,itrc)

double diff_factor (eta_rho, xi_rho) ;
 diff_factor:long_name = "horizontal diffusivity sponge factor" ;
 diff_factor:valid_min = 0. ;
 diff_factor:coordinates = "lon_rho lat_rho" ;

The horizontal viscosity is now computed as:

The horizontal mixing coefficients (visc_factor and diff_factor) can be set with analytical functions using
ANA_SPONGE or can be read from input GRID NetCDF file variables:

And the horizontal diffusion is now computed as:

The Matlab script add_sponge.m can be used to append sponge variables to the application GRID NetCDF
file

Standard Input File: Rivers and Sponges

Logical switches (TRUE/FALSE) to increase/decrease horizontal viscosity and/or diffusivity in specific
areas of the application domain (like sponge areas) for the desired application grid.

 LuvSponge == 3*F ! horizontal momentum
LtracerSponge == 2*F 2*F 2*F ! temperature, salinity, inert

Logical switches (TRUE/FALSE) to activate horizontal momentum transport point Sources/Sinks (like
river runoff transport) and mass point Sources/Sinks (like volume vertical influx), [1:Ngrids].

 LuvSrc == 3*F ! horizontal momentum transport
 LwSrc == 3*F ! volume vertical influx

Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks (like river runoff) and to specify
which tracer variables to consider: [1:NAT+NPT,Ngrids]. See glossary below for details.

 LtracerSrc == 2*F 2*F 2*F ! temperature, salinity, inert

Standard Input File: Climatology and Nudging

Logical switches (TRUE/FALSE) to read and process climatology fields. See glossary below for details.

 LsshCLM == 3*F ! sea-surface height
 Lm2CLM == 3*F ! 2D momentum
 Lm3CLM == 3*F ! 3D momentum

 LtracerCLM == 2*F 2*F 2*F ! temperature, salinity, inert

Logical switches (TRUE/FALSE) to nudge the desired climatology field(s). If not analytical climatology
fields, users need to turn ON the logical switches above to process the fields from the climatology
NetCDF file that are needed for nudging. See glossary below for details.

 LnudgeM2CLM == 3*F ! 2D momentum
 LnudgeM3CLM == 3*F ! 3D momentum

 LnudgeTCLM == 2*F 2*F 2*F ! temperature, salinity, inert

Nudging Coefficients Metadata

double M2_NudgeCoef (eta_rho, xi_rho) ;
 M2_NudgeCoef:long_name = "2D momentum inverse nudging coefficients" ;
 M2_NudgeCoef:units = "day-1" ;
 M2_NudgeCoef:coordinates = "xi_rho eta_rho " ;

double M3_NudgeCoef (s_rho, eta_rho, xi_rho) ;
 M3_NudgeCoef:long_name = "3D momentum inverse nudging coefficients" ;
 M3_NudgeCoef:units = "day-1" ;
 M3_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ;

double tracer_NudgeCoef (s_rho, eta_rho, xi_rho) ;
 tracer_NudgeCoef:long_name = "generic tracer inverse nudging coefficients” ;
 tracer_NudgeCoef:units = "day-1" ;
 tracer_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ;

double temp_NudgeCoef (s_rho, eta_rho, xi_rho) ;
 temp_NudgeCoef:long_name = "temp inverse nudging coefficients" ;
 temp_NudgeCoef:units = "day-1" ;
 temp_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ;

double salt_NudgeCoef (s_rho, eta_rho, xi_rho) ;
 salt_NudgeCoef:long_name = "salt inverse nudging coefficients" ;
 salt_NudgeCoef:units = "day-1" ;
 salt_NudgeCoef:coordinates = "xi_rho eta_rho s_rho " ;

The inverse (1/time) nudging coefficients can be set with analytical functions using ANA_NUDGCOEF or
can be read from new input NUDNAME NetCDF file variables:

Nesting Configuration Types

•  Composite Grids Super-Class:
1.  Mosaic Grids Sub-Class
2.  Composite Overlap Grids Sub-Class
3.  Complex Estuary Composite Grids Sub-Class
4.  Partial Boundary Composite Grids Sub-Class

•  Refinement Grids Super-Class:

1.  Single Refinement Sub-Class
2.  Multiple Refinement Sub-Class

•  Composite and Refinement Combination Super-Class:

1.  Refinement and Partial Boundary Composite Sub-Class
2.  Complex Estuary Refinement-Composite Sub-Class

Nesting Classes

Mosaic Composite Refinement

Composite Grid Sub-Classes

Refinement Grid Sub-Classes

Composite-Refinement Grid Sub-Classes

Contact Areas and Points

Refinement-Composite Sub-Class

Contact Areas and Points: Definitions
Contact Region (cr): Extended section of the nested grid that overlays an adjacent nested grid. It is the
region where the exchange of data between nested grids takes place. Since ROMS nesting is two-way
by default, there are Ncontact=(Ngrids-1)*2 contact regions, where Ngrids is the number of nested
grids and Ncontact is the number of contact regions in a nested application. There is a duality in ROMS
grid nesting: data donor in one contact region and data receiver in its conjugate contact region. Each
contact region has a donor and a receiver grid.

Contact Points: Grid cells inside a contact region. Since ROMS governing equations are solved in an
Arakawa C-grid, there are contact points at ρ-, Ψ-, u-, and v-points. However, the Ψ-points are only
used to define the physical grid perimeters within a contact region. Since the C-grid stencil indices in
ROMS are left-bottom ordered, there are always 4 ρ contact points at the left and bottom side of the
contact region. On the other hand, there are 3 ρ contact points on the right and top side of the contact
region.

Donor Grid (dg): Data source grid in a nesting contact region. In refinement, the donor grid is used
either to interpolate data from coarse to fine grid or to average data from fine to coarse grid (two-way
feedback).

Receiver Grid (rg): Data recipient grid in a nesting contact region. In refinement, the contact points of
the finer receiver grid are interpolated using the coarser donor data from the grid cell containing the
contact point. The interpolation can be linear or quadratic. In two-way nesting, when the coarse grid is
the receiver grid the finer grid solution is averaged within the coarse cell. The coarse grid cell value is
replaced with the finer grid averaged solution. This takes place in routine fine2coarse.

Nesting Layer: Nested grids time-step arrangement and order for the ROMS numerical kernel. It is
directly related to the time-step size (dt) for each nested grid. The number of nested layers, NestLayers,
is specified in standard input script (ocean.in) and should be equal to the different number of time-step
size (dt).

Contact Regions and Contact Points

 integer :: Ncontact total number of contact regions

 TYPE T_NGC

 logical :: coincident coincident donor and receiver points, p=q=0
 logical :: interpolate perform vertical interpolation

 integer :: donor_grid data donor grid number
 integer :: receiver_grid data receiver grid number
 integer :: Npoints

 integer, pointer :: Idg (:) donor grid, cell I-left index
 integer, pointer :: Jdg (:) donor grid, cell J-bottom index
 integer, pointer :: Kdg (: , :) donor grid, cell K-index

 integer, pointer :: Irg (:) receiver grid, I-contact point
 integer, pointer :: Jrg (:) receiver grid, J-contact point

real(r8), pointer :: Lweight (: , :) linear horizontal weights
 real(r8), pointer :: LweightUmasked (: , :) linear horizontal unmasked weights (WET_DRY)

 real(r8), pointer :: Qweight (: , :) quadratic horizontal weights
 real(r8), pointer :: QweightUmasked (: , :) quadratic horizontal unmasked weights (WET_DRY)

 real(r8), pointer :: Vweight(: , : , :) vertical weights

 END TYPE T_NGC

 TYPE (T_NGC), allocatable :: Rcontact (:) RHO-points
 TYPE (T_NGC), allocatable :: Ucontact (:) U-points
 TYPE (T_NGC), allocatable :: Vcontact (:) V-points

Contact Points Structure

Contact Points Interpolation

Lweight (1, :) = (1 - p) * (1 - q)
Lweight (2, :) = p * (1 - q)
Lweight (3, :) = p * q
Lweight (4, :) = (1 - p) * q

Value (Irg, Jrg) = Lweight (1,:) * F2d(Idg ,Jdg)+
 Lweight (2,:) * F2d(Idg+1,Jdg)+
 Lweight (3,:) * F2d(Idg+1,Jdg+1)+
 Lweight (4,:) * F2d(Idg ,Jdg+1)

If coincident contact points between data donor and data receiver grids, p = q = 0.0,

 Lweight (1, :) = 1.0 Value (Irg, Jrg) = Lweight (1, :) * F2d(Idg, Jdg)
 Lweight (3, :) = 0.0
 Lweight (4, :) = 0.0
 Lweight (5, :) = 0.0

3 (Idg+1, Jdg+1, Kdg-1)

2

4

(Idg, Jdg, Kdg-1) 1 Irg

Jrg

q

1- q

1- p

p

3 Kdg-1

7 Kdg

5
6

4

1 2

8

5

Suffix: dg = donor grid
 rg = receiver grid

Contact Points: Quadratic Interpolation

R- = 0.5 * p * (p-1) + α
Ro = (1-p2) - 2α
R+ = 0.5 * p * (p+1) + α

S- = 0.5 * q * (q-1) + α
So = (1-q2) - 2α
S+ = 0.5 * q * (q+1) + α

The finer grid variable, F, is interpolated from the coarser grid variable, C, as:

F(Irg,Jrg) = S- * [R- * C(Idg-1,Jdg-1) + Ro * C(Idg,Jdg-1) + R+ * C(Idg+1,Jdg-1)]+
 So * [R- * C(Idg-1,Jdg) + Ro * C(Idg,Jdg) + R+ * C(Idg+1,Jdg)]+
 S+ * [R- * C(Idg-1,Jdg+1) + Ro * C(Idg,Jdg+1) + R+ * C(Idg+1,Jdg+1)]

Contact Points: Quadratic Interpolation
For conservation and reversibility, we need:

where r is the grid refinement factor. The reversibility condition is:

Then, the quadratic interpolation weights are:

Qweight (1, :) = R- * S-
Qweight (2, :) = Ro * S-
Qweight (3, :) = R+ * S-
Qweight (4, :) = R- * So
Qweight (5, :) = Ro * So
Qweight (6, :) = R+ * So
Qweight (7, :) = R- * S+
Qweight (8, :) = Ro * S+
Qweight (9, :) = R+ * S+

Σ Qweight(1:9,:) = 1

Clark and Farley, 1984

Nested Grids: Multi-Refinement Class

Ngrids = 4
NestLayers = 3
GridsInLayer = 1 2 1
Ncontact = 6
Donor Grid = blue
Receiver Grid = red

Ngrids = 4
NestLayers = 3
GridsInLayer = 1 2 1
Ncontact = 6
Donor Grid = red
Receiver Grid = green

Nested Grids: Multi-Refinement Class

Ngrids = 4
NestLayers = 3
GridsInLayer = 1 2 1
Ncontact = 6
Donor Grid = red
Receiver Grid = blue

Ngrids = 4
NestLayers = 3
GridsInLayer = 1 2 1
Ncontact = 6
Donor Grid = green
Receiver Grid = red

Realistic Nesting Configuration: US East Coast
(Complex Estuary Refinement-Composite Sub-Class)

Realistic Nesting Configuration: US East Coast
(Complex Estuary Refinement-Composite Sub-Class)

The coarser grid, ESPRESSO (130 x 82), has an average resolution of
dx=7.5km, dy=5.8km. The nested grids (ρ-points mesh) are color coded
for convenience to show the strategy used to better resolve the
Delaware and Chesapeake Estuary Systems. The red and green are
refinement grids whereas blue and magenta are composite grids. The
refinement ratio is 1:7. An intermediate 1:7 refinement grid is created
using Matlab script coarse2fine.m that included both the Delaware and
Chesapeake Estuary Systems. Then, the Matlab script grid_extract.m is
used to extract the Delaware Bay refinement grid (58 x 142) and
Delaware River composite grid (42 x 55). Similarly, grid_extract.m is
used to extract the Chesapeake Bay outer refinement grid (135 x 142)
and Chesapeake Bay inner composite grid (233 x 212).

Realistic Nesting Configuration: Gulf of Mexico
(Multiple Refinement Sub-Class)

Realistic Nesting Configuration: Gulf of Mexico
(Multiple Refinement Sub-Class)

Realistic Nesting Configuration: US West Coast
(Telescoping Refinement Sub-Class)

!

Modeling of Monterey Canyon

!

Realistic Nesting Configuration: South China Sea
(Multiple Refinement Sub-Class)

Free-Surface

!

Realistic Nesting Configuration: South China Sea
(Multiple Refinement Sub-Class)

Temperature

Realistic Nesting Configuration: South China Sea
(Multiple Refinement Sub-Class)

Salinity

Lake Jersey Test Case

Lake Jersey

Lake Jersey Grid Information

Grid Mesh
Size

Refinement
Factor

Parent
Imin

Parent
Imax

Parent
Jmin

Parent
Jmax

Δx
Δy Grid NetCDF File

a 100x80x8 - - - - - 500.0 m lake_jersey_grd_a.nc

b 66x99x8 1:3 from a 9 31 12 45 166.6 m lake_jersey_grd_b.nc

c 120x130x8 1:5 from a 34 58 19 45 100.0 m lake_jersey_grd_c.nc

d 114x60x8 1:3 from a 50 88 50 70 166.6 m lake_jersey_grd_d.nc

e 132x60x8 1:3 from d 36 80 20 40 55.5 m lake_jersey_grd_e.nc

Lake Jersey

Lake Jersey: Case AB
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case AB
One-Way Two-Way

Free-Surface Free-Surface

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity

Lake Jersey: Case AC
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case AC
One-Way Two-Way

Free-Surface Free-Surface

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity

Lake Jersey: Case AD
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case AD
One-Way Two-Way

Free-Surface Free-Surface

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity

Lake Jersey: Case ABD
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case ABD
One-Way Two-Way

Free-Surface Free-Surface

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity

Lake Jersey: Case ADE
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case ADE
One-Way Two-Way

Free-Surface Free-Surface

X 10-4 X 10-4 2D Relative Vorticity 2D Relative Vorticity

Lake Jersey: Case ABDC
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case ABDC
One-Way Two-Way

Free-Surface

2D Relative Vorticity

Free-Surface

2D Relative Vorticity X 10-4 X 10-4

Lake Jersey: Case ACDE
One-Way Two-Way

Temperature

Salinity

Temperature

Salinity

Lake Jersey: Case ACDE
One-Way Two-Way

Free-Surface

2D Relative Vorticity

Free-Surface

2D Relative Vorticity X 10-4 X 10-4

•  DOPPIO: 242x106 (~7 km)
•  Chesapeake-Delaware grid (1:5 ratio): 215x205 (~1.8 km)

•  Chesapeake-Delaware grid (1:7 ratio): 303x289 (~1.2 km)
•  PIONEER (Hudson Canyon) grid (1:3 ratio): 204x216 (~2.3 km)

•  ARRAY (Pioneer Data Array) grid (1:3; 1:9 ratio): 210x195 (~1 km)

Mid-Atlantic Bight Grids

DOPPIO Refinement Grids

Bathymetry (m)

PIONEER Data Array Observations

Initial Surface Temperature (01-Jan-2014)

DOPPIO Sponge Areas

Same Reynolds Number for all Grids (U Δx/ν):

VISC2 == 90.0d0 30.0d0 10.0d0 (m2/s)
 TNU2 == 2*27.0d0 2*9.0d0 2*3.0d0 (m2/s)

Time stepping (Δt):

 DT == 180.0d0 90.0d0 45.0d0 (3/1.5/0.75 minute step)

 Two-Way DOPPIO-PIONEER-ARRAY
(1:3 Refinement)

Free-Surface

Two-Way DOPPIO-PIONEER-ARRAY
(1:3 Refinement)

Surface Temperature (Celsius)

Two-Way DOPPIO-PIONEER-ARRAY
(1:3 Refinement)

Surface Salinity

Two-Way DOPPIO-PIONEER-ARRAY
(1:3 Refinement)

Surface Relative Vorticity (1/s)

https://www.myroms.org/wiki/index.php/Matlab_Scripts

Heterogeneous Model Nesting
(One-Way Open boundary Conditions)

Nesting Remarks

•  ROMS nesting capabilities are unique and allow complex
estuary and coastal configurations with unlimited number
of composite and refined grids

•  Coincident composite and mosaic grids produce identical
solutions when compared to one large continuous grid

•  Nowadays, both one-way and two-way nesting work well
•  Placement of nested grids is application dependent and

subject to geometrical and dynamical constrains
•  The two-way exchange of information fine-to-coarse in grid

refinement applications is expensive. We are exploring
strategies to minimize computational cost.

Upcoming

•  Efficient two-way MPI-communications for the fine-to-
coarse nesting step

•  Heterogeneous models nesting: one-way open boundary
conditions (NetCDF files or ESMF/MCT coupling)

•  Multiple model coupling with ESMF (Earth System Modeling
Framework, Version 7) including the NUOPC (National
Unified Operational Prediction Capability) layer

•  Fully coupled ROMS and COAMPS dynamics via ESMF and
NUOPC

•  Fully coupled ROMS and COAMPS data assimilation (EnKF
and 4D-Var)

•  4D-Var data assimilation within nested grids
•  Overhaul of ROMS plotting package (NCAR GKS library) to

include nesting grids
•  Release of ROMS 4.0

Warner, J.C., W.R. Geyer, and H.G. Arango, 2010: Using composite grid approach in
complex coastal domain to estimate estuarine residence time, Computer and
Geosciences, 36, 921-935, doi:10.1016/j.cageo.2009.11.008.

Reference

