Wave-current Interaction (WEC) in the COAWST

COAWST Modeling System

Nirnimesh Kumar with JC Warner, G. Voulgaris & M. Olabarrieta see Kumar et al., 2012:

Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications, Ocean Modelling, Volume 47, 2012, Pages 65-95, 10.1016/ j.ocemod.2012.01.003.

Wave-Averaged Equations (e.g., Eq 11)

$$\frac{\partial}{\partial t}(H_{z}u) + \frac{\partial}{\partial x}(H_{z}u \cdot u) + \frac{\partial}{\partial y}(H_{z}u \cdot v) + u\frac{\partial}{\partial x}(H_{z}u^{St}) + u\frac{\partial}{\partial y}(H_{z}v^{St})$$

$$+ ACC \qquad HA$$

$$+H_{z}F^{x} + H_{z}F^{wx} + H_{z}D^{x} - \frac{\partial}{\partial s}(u^{\bar{\prime}}v^{\prime} - \frac{\nu}{H_{z}}\frac{\partial u}{\partial s})$$

$$\stackrel{\bullet}{\longrightarrow} BF \quad BA+RA+Str \quad HM \quad VM$$

Wave-current Interaction Terms		
StCOR	Stokes-Coriolis Force	
PG	Pressure Gradient (includes Bernoulli head, quasi-static pressure etc.)	
HVF	Horizontal Vortex Force	
BA, RA	Breaking and Roller Accelerations	
Str	Bottom and Surface Streaming	

Data Field Exchange

SEDIMENT

Wave-Current Interaction

*see Kumar et al., 2011

WEC_VF (needs wave dissipation)

*see Kumar et al., 2012

cppdefs.h (COAWST/ROMS/Include)			
WEC_MELLOR	Activates Mellor (2011) method for WEC		
WEC_VF	Activates McWilliams et al. (2004) for WEC		

Additional Processes

- Roller Model
- Wave-induced Mixing
- Bottom Streaming
- Surface Streaming

Depth-limited Wave-Dissipation Options

• **WEC_VF** option requires depth-limited dissipation to estimate breaking acceleration (similar to radiation stress gradients).

Dissipation Options		
WDISS_THORGUZA	Depth-limited wave dissipation from Thornton & Guza (1983), see Eq. 31.	
WDISS_CHURTHOR	Depth-limited wave dissipation from Church & Thornton (1993), see Eq. 32	
WDISS_WAVEMOD	Depth-limited wave dissipation from SWAN. Use INRHOG=1	

Notes:

- If no wave-dissipation information available use WDISS_THORGUZA/ CHURTHOR
- If no wave-dissipation module is defined and WEC_VF is still activated, the model expects a forcing file with relevant wave quantities

Shoreface Test Case (Obliquely Incident Waves on a Planar Beach)

- Wave-field computed using SWAN
- One-way coupling (WEC)
- Application Name: SHOREFACE
- Header: COAWST/ROMS/Include/shoreface.h
- Input: COAWST/ROMS/External/ocean_shoreface.in

Header File (COAWST/ROMS/Include/shoreface.h)

/*		
** svn \$Id: shoreface.	h 429 2009-12-20 17:30:26Z arango \$	*
<pre>** Copyright (c) 2002-2 ** Licensed under a M ** See License_ROMS.</pre>	2014 The ROMS/TOMS Group MIT/X style license txt	* * * *
<pre>** ** Options for Shore Fo ** ** Application flag: **</pre>	ace Planar Beach Test Case. SHOREFACE	
<pre>** Input scripts: ** */</pre>	ocean_shoreface.h sediment_shoreface.h	
<pre>#define ROMS_MODEL #undef WEC_MELLOR #define WEC_VF #define WDISS_CHURTHOR #define ROTTOM_STREAMT</pre>		
#define SURFACE_STREAM	ING → Do not use if not really studying streaming processes	1

Input File (COAWST/ROMS/External/ocean_shoreface.h)

! Wec boundary conditions

LBC(isU2Sd) ==	Gra	Clo	Gra	Gra	! 2D U-stokes
LBC(isV2Sd) ==	Gra	Clo	Gra	Gra	! 2D V-stokes
LBC(isU3Sd) ==	Gra	Clo	Gra	Gra	! 3D U-stokes
LBC(isV3Sd) ==	Gra	Clo	Gra	Gra	! 3D V-stokes

! Constants used in surface turbulent kinetic energy flux computation.

CHARNOK_ALPHA == 1400.0d0	! Charnok surface roughness
$ZOS_HSIG_ALPHA == 0.5d0$! roughness from wave amplitude
$SZ_ALPHA == 0.25d0$! roughness from wave dissipation
$CRGBAN_CW == 100.0d0$! Craig and Banner wave breaking
WEC_ALPHA == $0.0d0$! 0: all wave dissip goes to break and none to roller.
	! 1: all wave dissip goes to roller and none to breaking.

$$B^{b} = \frac{(1 - \alpha^{r})\epsilon^{b}}{\rho_{0}\sigma} \mathbf{k} \cdot f^{b}(z)$$

WEC Related OUTPUT (COAWST/ROMS/External/ocean_shoreface.h)

- Hout(idU2Sd) == T
- Hout(idV2Sd) == T
- Hout(idU3Sd) == T
- Hout(idV3Sd) == T
- Hout(idW3Sd) == T
- Hout(idW3St) == T
- Hout(idWamp) == T
- Hout(idWlen) == T
- Hout(idWlep) == T
- Hout(idWdir) == T
- Hout(idWptp) == T
- Hout(idWpbt) == T
- Hout(idWorb) == T
- Hout(idWbrk) == T
- Hout(idUwav) == T
- Hout(idVwav) == T
- Hout (idwdif) -- 1
- Hout(idWdif) == T
- Hout(idWdib) == T
- Hout(idWdiw) == T
- Hout(idWdis) == T
- Hout(idWrol) == T
- ! ubar_stokes ! vbar_stokes ! u_stokes ! v_stokes ! omega_stokes ! w_stokes ! Hwave ! Lwave ! Lwavep ! Dwave ! Pwave_top ! Pwave bot ! Uwave_rms ! Wave_break ! uWave ! vWave ! Dissip_fric ! Dissip_break ! Dissip_wcap
- ! Dissip_roller
- ! rollA

2D U-Stokes velocity 2D V-Stokes velocity 3D U-Stokes velocity 3D V-Stokes velocity 3D Omega-Stokes velocity 3D W-Stokes velocity wave height wave length-mean wave length-peak wave direction wave surface period wave bottom period wave bottom orbital velocity wave breaking (percent) wave-depth avgeraged U-velocity wave-depth avgeraged V-velocity wave dissipation due to bottom friction wave dissipation due to breaking wave dissipation due to white capping wave roller dissipation wave roller action density

Shoreface Test Results

Wave propagation direction

Shoreface Test Results

Shoreface Test Results

Roller Model Options

Roller Options		
ROLLER_SVENDSEN	Activates wave rollers based on Svendsen, 1984. See Warner et al. (2008), Eqns. 7 and 10.	
ROLLER_MONO	Activates wave roller for monochromatic waves from REF/DIF. See Haas and Warner, 2009.	
ROLLER_RENIERS	Activates wave rollers following Reniers et al. (2004). See equations 34-39.	

Notes:

 If ROLLER_RENIERS is activated then the parameter wec_alpha in the INPUT file must be changed. For wec_alpha=0 no wave-dissipation goes into creating rollers, while for wec_alpha=1 all wave dissipation creates rollers

WEC_ALPHA == 0.0d0

! 0: all wave dissip goes to break and none to roller. ! 1: all wave dissip goes to roller and none to breaking.

DUCK'94 Test Case (Obliquely Incident Waves on a Barred Beach)

Wave-induced Mixing

Mixing Options		
	Inputs part of wave-energy dissipation as near surface TKE. See equations 44-47.	
TKE_WAVEDISS ZOS_HSIG	The option ZOS_HSIG indicates that (a) the thickness of near- surface layer where TKE is provided is determined through percent of wave height (see equation 46); (b) the amount of energy as TKE is provided as percent of wave dissipation (see equation 47).	

 $ZOS_HSIG_ALPHA == 0.5d0$ $SZ_ALPHA == 0.25d0$! roughness from wave amplitude
! roughness from wave dissipation

Wave-induced Mixing Example (DUCK' 94)

Cross-shore Velocity

Alongshore Velocity

Vertical eddy viscosity

Turbulent Kinetic Energy

Bottom and Surface Streaming

Streaming Options		
BOTTOM_STREAMING	Wave-induced bottom streaming based on Reniers et al. (2004). Requires bottom friction induced wave-dissipation	
BOTTOM_STREAMING_ XU_BOWEN	Estimates bottom streaming based on Xu & Bowen (1994)	
SURFACE_STREAMING	Estimates surface streaming based on Xu & Bowen (1994)	

Notes:

 If BOTTOM_STREAMING_XU_BOWEN is activated, the wave-bottom boundary layer needs to be resolved, which requires very high nearbottom resolution. Suggested VTRANSFORM=2 and VSTRETCHING=3

Bottom Streaming Example (Lentz et al., 2008)

Rip-Current Dynamics

Inlet Dynamics

References (& other relevant papers)

<u>Mid-shelf to Surfzone Coupled ROMS-SWAN Model Data Comparison of Waves,</u> <u>Currents, and Temperature: Diagnosis of Subtidal Forcings and Response.</u> Nirnimesh Kumar, Falk Feddersen, Yusuke Uchiyama, James McWilliams, and William O'Reilly, Journal of Physical Oceanography, DOI: /10.1175/JPO-D-14-0151.1, 2015, Link.

<u>The role of morphology and wave-current interaction at tidal inlets: An idealized</u> <u>modeling analysis.</u> Olabarrieta, Maitane, W. Rockwell Geyer, and Nirnimesh Kumar, Journal of Geophysical Research: Oceans, 119(12), 8818-8837, 2014, DOI: 10.1002/2014JC010191, <u>Link</u>.

Implementation of the vortex force formalism in the coupled ocean-atmosphere-wavesediment transport (COAWST) modeling system for inner shelf and surf zone applications. Nirnimesh Kumar, George Voulgaris, John C. Warner, Maitane Olabarrieta, Ocean Modelling, 47: 65-95, DOI: 10.1016/j.ocemod.2012.01.003, 2012, Link.

Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications. Nirnimesh, Kumar, George Voulgaris, and John C. Warner, Coastal Engineering 58, no. 12 (2011): 1097-1117, DOI: 10.1016/j.coastaleng. 2011.06.009, 2011, Link.

<u>Wave-current interaction in Willapa Bay</u>. Maitane, Olabarrieta, John C. Warner, and Nirnimesh Kumar, Journal of Geophysical Research: Oceans (1978–2012) 116, no. C12 (2011), DOI: 10.1029/2011JC007387, <u>Link</u>.