#include "cppdefs.h" #ifdef ADJOINT SUBROUTINE ad_def_his (ng, ldef) ! !svn $Id: ad_def_his.F 889 2018-02-10 03:32:52Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2019 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine creates adjoint history NetCDF file, it defines its ! ! dimensions, attributes, and variables. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # ifdef BIOLOGY USE mod_biology # endif # ifdef FOUR_DVAR USE mod_fourdvar # endif USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_scalars # if defined SEDIMENT_NOT_YET || defined BBL_MODEL_NOT_YET USE mod_sediment # endif ! USE def_var_mod, ONLY : def_var USE strings_mod, ONLY : FoundError ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng logical, intent(in) :: ldef ! ! Local variable declarations. ! logical :: got_var(NV) integer, parameter :: Natt = 25 integer :: i, j, ifield, itrc, nvd3, nvd4 integer :: recdim, status, varid # ifdef ADJUST_BOUNDARY integer :: IorJdim, brecdim # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS integer :: frecdim # endif # if defined IS4DVAR integer :: MinnerDim, NinnerDim, NouterDim integer :: vardim(2) # endif integer :: DimIDs(32), t2dgrd(3), u2dgrd(3), v2dgrd(3) # ifdef ADJUST_BOUNDARY integer :: t2dobc(4) # endif integer :: Vsize(4) integer :: def_dim # ifdef SOLVE3D integer :: t3dgrd(4), u3dgrd(4), v3dgrd(4), w3dgrd(4) # ifdef ADJUST_BOUNDARY integer :: t3dobc(5) # endif # ifdef ADJUST_STFLUX integer :: t3dfrc(4) # endif # endif # ifdef ADJUST_WSTRESS integer :: u3dfrc(4), v3dfrc(4) # endif real(r8) :: Aval(6) character (len=120) :: Vinfo(Natt) character (len=256) :: ncname ! SourceFile=__FILE__ ! !----------------------------------------------------------------------- ! Set and report file name. !----------------------------------------------------------------------- ! IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ncname=ADM(ng)%name ! IF (Master) THEN IF (ldef) THEN WRITE (stdout,10) TRIM(ncname) ELSE WRITE (stdout,20) TRIM(ncname) END IF END IF ! !======================================================================= ! Create a new adjoint history file. !======================================================================= ! DEFINE : IF (ldef) THEN CALL netcdf_create (ng, iADM, TRIM(ncname), ADM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) THEN IF (Master) WRITE (stdout,30) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'IorJ', & & IOBOUNDS(ng)%IorJ, IorJdim) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef SOLVE3D # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'N', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef SEDIMENT status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'NST', & & NST, DimIDs(32)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif # ifdef ECOSIM status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'boundary', & & 4, DimIDs(14)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef FOUR_DVAR status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'frc_adjust', & & Nfrec(ng), DimIDs(30)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'obc_adjust', & & Nbrec(ng), DimIDs(31)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined IS4DVAR status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Ninner', & & Ninner, NinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Minner', & & Ninner+1, MinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, 'Nouter', & & Nouter, NouterDim) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif status=def_dim(ng, iADM, ADM(ng)%ncid, ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & nf90_unlimited, DimIDs(12)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN recdim=DimIDs(12) # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS frecdim=DimIDs(30) # endif # ifdef ADJUST_BOUNDARY brecdim=DimIDs(31) # endif ! ! Set number of dimensions for output variables. ! # if defined WRITE_WATER && defined MASKING nvd3=2 nvd4=2 # else nvd3=3 nvd4=4 # endif ! ! Define dimension vectors for staggered tracer type variables. ! # if defined WRITE_WATER && defined MASKING t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) # endif # else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) t2dgrd(3)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) t3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_STFLUX t3dfrc(1)=DimIDs( 1) t3dfrc(2)=DimIDs( 5) t3dfrc(3)=frecdim t3dfrc(4)=DimIDs(12) # endif # endif # ifdef ADJUST_BOUNDARY t2dobc(1)=IorJdim t2dobc(2)=DimIDs(14) t2dobc(3)=brecdim t2dobc(4)=DimIDs(12) # ifdef SOLVE3D t3dobc(1)=IorJdim t3dobc(2)=DimIDs( 9) t3dobc(3)=DimIDs(14) t3dobc(4)=brecdim t3dobc(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered u-momentum type variables. ! # if defined WRITE_WATER && defined MASKING u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif # else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) u2dgrd(3)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) u3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS u3dfrc(1)=DimIDs( 2) u3dfrc(2)=DimIDs( 6) u3dfrc(3)=frecdim u3dfrc(4)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered v-momentum type variables. ! # if defined WRITE_WATER && defined MASKING v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif # else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) v2dgrd(3)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) v3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS v3dfrc(1)=DimIDs( 3) v3dfrc(2)=DimIDs( 7) v3dfrc(3)=frecdim v3dfrc(4)=DimIDs(12) # endif # endif # ifdef SOLVE3D ! ! Define dimension vector for staggered w-momentum type variables. ! # if defined WRITE_WATER && defined MASKING w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # endif # endif ! ! Initialize unlimited time record dimension. ! ADM(ng)%Rindex=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iADM, ADM(ng)%ncid, ncname, DimIDs) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) WRITE (Vinfo( 3),'(a,a)') 'seconds since ', TRIM(Rclock%string) Vinfo( 4)=TRIM(Rclock%calendar) Vinfo(14)=Vname(4,idtime) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idtime), & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef PROPAGATOR ! ! Define Ritz eigenvalues and Ritz eigenvectors Euclidean norm. ! Vinfo( 1)='Ritz_rvalue' Vinfo( 2)='real Ritz eigenvalues' status=def_var(ng, iADM, ADM(ng)%ncid, varid, & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # if defined AFT_EIGENMODES Vinfo( 1)='Ritz_ivalue' Vinfo( 2)='imaginary Ritz eigenvalues' status=def_var(ng, iADM, ADM(ng)%ncid, varid, & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif Vinfo( 1)='Ritz_norm' Vinfo( 2)='Ritz eigenvectors Euclidean norm' status=def_var(ng, iADM, ADM(ng)%ncid, varid, & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined IS4DVAR ! ! Define Lanczos algorithm coefficients which can be used to ! compute the sensitivity of the observations to the 4DVAR ! data assimilation system. ! Vinfo( 1)='cg_beta' Vinfo( 2)='conjugate gradient beta coefficient' vardim(1)=MinnerDim vardim(2)=NouterDim status=def_var(ng, iADM, ADM(ng)%ncid, varid, NF_FRST, & & 2, vardim, Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='cg_delta' Vinfo( 2)='Lanczos algorithm delta coefficient' vardim(1)=NinnerDim vardim(2)=NouterDim status=def_var(ng, iADM, ADM(ng)%ncid, varid, NF_FRST, & & 2, vardim, Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='cg_zv' Vinfo( 2)='Lanczos recurrence eigenvectors' vardim(1)=NinnerDim vardim(2)=NinnerDim status=def_var(ng, iADM, ADM(ng)%ncid, varid, NF_FRST, & & 2, vardim, Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef ADJUST_WSTRESS ! ! Define surface U-momentum stress. Notice that the stress has its ! own fixed time-dimension (of size Nfrec) to allow 4DVAR adjustments ! at other times in addition to initialization time. ! Vinfo( 1)=Vname(1,idUsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUsms)) Vinfo( 3)='meter2 second-2' Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUsms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idUsms), & & NF_FOUT, nvd4, u3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define surface V-momentum stress. ! Vinfo( 1)=Vname(1,idVsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVsms)) Vinfo( 3)='meter2 second-2' Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVsms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVsms), & & NF_FOUT, nvd4, v3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined ADJUST_STFLUX && defined SOLVE3D ! ! Define surface net heat flux. Notice that different tracer fluxes ! are written at their own fixed time-dimension (of size Nfrec) to ! allow 4DVAR adjustments at other times in addition to initial time. ! DO itrc=1,NT(ng) IF (Lstflux(itrc,ng)) THEN Vinfo( 1)=Vname(1,idTsur(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTsur(itrc))) IF (itrc.eq.itemp) THEN Vinfo( 3)='Celsius meter second-1' Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo( 3)='meter second-1' Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTsur(itrc),ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, & & ADM(ng)%Vid(idTsur(itrc)), NF_FOUT, & & nvd4, t3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF END DO # endif ! ! Define bathymetry. ! IF (Hout(idbath,ng)) THEN Vinfo( 1)=Vname(1,idbath) WRITE (Vinfo( 2),40) TRIM(Vname(2,idbath)) Vinfo( 3)='meter-1' Vinfo(14)=Vname(4,idbath) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idbath,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idbath), & & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! ! Define free-surface. ! IF (Hout(idFsur,ng)) THEN Vinfo( 1)=Vname(1,idFsur) WRITE (Vinfo( 2),40) TRIM(Vname(2,idFsur)) Vinfo( 3)='meter-1' Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) # if !defined WET_DRY && (defined WRITE_WATER && defined MASKING) Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idFsur), & # ifdef WET_DRY & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef ADJUST_BOUNDARY ! ! Define free-surface open boundaries. ! IF (ANY(Lobc(:,isFsur,ng))) THEN ifield=idSbry(isFsur) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='meter-1' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif ! ! Define 2D U-momentum component. ! IF (Hout(idUbar,ng)) THEN Vinfo( 1)=Vname(1,idUbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUbar)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idUbar), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef ADJUST_BOUNDARY ! ! Define 2D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUbar,ng))) THEN ifield=idSbry(isUbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif ! ! Define 2D V-momentum component. ! IF (Hout(idVbar,ng)) THEN Vinfo( 1)=Vname(1,idVbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVbar)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVbar), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef ADJUST_BOUNDARY ! ! Define 2D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVbar,ng))) THEN ifield=idSbry(isVbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif # ifdef SOLVE3D ! ! Define 3D U-momentum component. ! IF (Hout(idUvel,ng)) THEN Vinfo( 1)=Vname(1,idUvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUvel)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idUvel), & & NF_FOUT, nvd4, u3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef ADJUST_BOUNDARY ! ! Define 3D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUvel,ng))) THEN ifield=idSbry(isUvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif ! ! Define 3D V-momentum component. ! IF (Hout(idVvel,ng)) THEN Vinfo( 1)=Vname(1,idVvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvel)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVvel), & & NF_FOUT, nvd4, v3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef ADJUST_BOUNDARY ! ! Define 3D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVvel,ng))) THEN ifield=idSbry(isVvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='second meter-1' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) IF (Hout(idTvar(itrc),ng)) THEN Vinfo( 1)=Vname(1,idTvar(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTvar(itrc))) Vinfo( 3)=Vname(3,idTvar(itrc)) Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT_NOT_YET DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Tid(itrc), & & NF_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF END DO # ifdef ADJUST_BOUNDARY ! ! Define tracer type variables open boundaries. ! DO itrc=1,NT(ng) IF (ANY(Lobc(:,isTvar(itrc),ng))) THEN ifield=idSbry(isTvar(itrc)) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF END DO # endif ! ! Define density anomaly. ! IF (Hout(idDano,ng)) THEN Vinfo( 1)=Vname(1,idDano) WRITE (Vinfo( 2),40) TRIM(Vname(2,idDano)) Vinfo( 3)=Vname(3,idDano) Vinfo(14)=Vname(4,idDano) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idDano,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idDano), & & NF_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! ! Define vertical viscosity coefficient. ! IF (Hout(idVvis,ng)) THEN Vinfo( 1)=Vname(1,idVvis) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvis)) Vinfo( 3)=Vname(3,idVvis) Vinfo(14)=Vname(4,idVvis) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvis,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVvis), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! ! Define vertical diffusion coefficient for potential temperature. ! IF (Hout(idTdif,ng)) THEN Vinfo( 1)=Vname(1,idTdif) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTdif)) Vinfo( 3)=Vname(3,idTdif) Vinfo(14)=Vname(4,idTdif) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTdif,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idTdif), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # ifdef SALINITY ! ! Define vertical diffusion coefficient for salinity. ! IF (Hout(idSdif,ng)) THEN Vinfo( 1)=Vname(1,idSdif) WRITE (Vinfo( 2),40) TRIM(Vname(2,idSdif)) Vinfo( 3)=Vname(3,idSdif) Vinfo(14)=Vname(4,idSdif) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSdif,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idSdif), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif # ifndef ADJUST_STFLUX ! ! Define surface tracer fluxes. ! DO itrc=1,NT(ng) IF (Hout(idTsur(itrc),ng)) THEN Vinfo( 1)=Vname(1,idTsur(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTsur(itrc))) Vinfo( 3)=Vname(3,idTsur(itrc)) IF (itrc.eq.itemp) THEN Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(14)=Vname(4,idTsur(itrc)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTsur(itrc),ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, & & ADM(ng)%Vid(idTsur(itrc)), NF_FOUT, & & nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF END DO # endif # endif # ifndef ADJUST_WSTRESS ! ! Define surface U-momentum stress. ! IF (Hout(idUsms,ng)) THEN Vinfo( 1)=Vname(1,idUsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUsms)) Vinfo( 3)=Vname(3,idUsms) Vinfo(14)=Vname(4,idUsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUsms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idUsms), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! ! Define surface V-momentum stress. ! IF (Hout(idVsms,ng)) THEN Vinfo( 1)=Vname(1,idVsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVsms)) Vinfo( 3)=Vname(3,idVsms) Vinfo(14)=Vname(4,idVsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVsms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVsms), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF # endif ! ! Define bottom U-momentum stress. ! IF (Hout(idUbms,ng)) THEN Vinfo( 1)=Vname(1,idUbms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUbms)) Vinfo( 3)=Vname(3,idUbms) Vinfo(14)=Vname(4,idUbms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idUbms), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! ! Define bottom V-momentum stress. ! IF (Hout(idVbms,ng)) THEN Vinfo( 1)=Vname(1,idVbms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVbms)) Vinfo( 3)=Vname(3,idVbms) Vinfo(14)=Vname(4,idVbms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbms,ng),r8) status=def_var(ng, iADM, ADM(ng)%ncid, ADM(ng)%Vid(idVbms), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL netcdf_enddef (ng, iADM, ncname, ADM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iADM, ADM(ng)%ncid, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF DEFINE ! !======================================================================= ! Open an existing adjoint file, check its contents, and prepare for ! appending data. !======================================================================= ! QUERY : IF (.not.ldef) THEN ncname=ADM(ng)%name ! ! Open adjoint file for read/write. ! CALL netcdf_open (ng, iADM, ncname, 1, ADM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) THEN WRITE (stdout,60) TRIM(ncname) RETURN END IF ! ! Inquire about the dimensions and check for consistency. ! CALL netcdf_check_dim (ng, iADM, ncname, & & ncid = ADM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Inquire about the variables. ! CALL netcdf_inq_var (ng, iADM, ncname, & & ncid = ADM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! adjoint variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. ADM(ng)%Vid(idtime)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. ADM(ng)%Vid(idFsur)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. ADM(ng)%Vid(idUbar)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. ADM(ng)%Vid(idVbar)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isFsur)))) THEN got_var(idSbry(isFsur))=.TRUE. ADM(ng)%Vid(idSbry(isFsur))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUbar)))) THEN got_var(idSbry(isUbar))=.TRUE. ADM(ng)%Vid(idSbry(isUbar))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVbar)))) THEN got_var(idSbry(isVbar))=.TRUE. ADM(ng)%Vid(idSbry(isVbar))=var_id(i) # endif # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. ADM(ng)%Vid(idUvel)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. ADM(ng)%Vid(idVvel)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUvel)))) THEN got_var(idSbry(isUvel))=.TRUE. ADM(ng)%Vid(idSbry(isUvel))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVvel)))) THEN got_var(idSbry(isVvel))=.TRUE. ADM(ng)%Vid(idSbry(isVvel))=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idDano))) THEN got_var(idDano)=.TRUE. ADM(ng)%Vid(idDano)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvis))) THEN got_var(idVvis)=.TRUE. ADM(ng)%Vid(idVvis)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTdif))) THEN got_var(idTdif)=.TRUE. ADM(ng)%Vid(idTdif)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSdif))) THEN got_var(idSdif)=.TRUE. ADM(ng)%Vid(idSdif)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUsms))) THEN got_var(idUsms)=.TRUE. ADM(ng)%Vid(idUsms)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVsms))) THEN got_var(idVsms)=.TRUE. ADM(ng)%Vid(idVsms)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbms))) THEN got_var(idUbms)=.TRUE. ADM(ng)%Vid(idUbms)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbms))) THEN got_var(idVbms)=.TRUE. ADM(ng)%Vid(idVbms)=var_id(i) END IF # ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. ADM(ng)%Tid(itrc)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isTvar(itrc))))) THEN got_var(idSbry(isTvar(itrc)))=.TRUE. ADM(ng)%Vid(idSbry(isTvar(itrc)))=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idTsur(itrc)))) THEN got_var(idTsur(itrc))=.TRUE. ADM(ng)%Vid(idTsur(itrc))=var_id(i) END IF END DO #endif END DO ! ! Check if adjoint variables are available in input NetCDF file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idFsur).and.Hout(idFsur,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUbar).and.Hout(idUbar,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbar).and.Hout(idVbar,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isFsur))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isFsur))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isUbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef SOLVE3D IF (.not.got_var(idUvel).and.Hout(idUvel,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVvel).and.Hout(idVvel,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isUvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idDano).and.Hout(idDano,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idDano)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idUsms).and.Hout(idUsms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVsms).and.Hout(idVsms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUbms).and.Hout(idUbms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUbms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbms).and.Hout(idVbms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVbms)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc)).and.Hout(idTvar(itrc),ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isTvar(itrc)))) THEN IF (Master) WRITE (stdout,70) & & TRIM(Vname(1,idSbry(isTvar(itrc)))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idTsur(itrc)).and.Hout(idTsur(itrc),ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTsur(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif ! ! Set unlimited time record dimension to the appropriate value. ! IF (ndefADJ(ng).gt.0) THEN ADM(ng)%Rindex=((ntstart(ng)-1)- & & ndefADJ(ng)*((ntstart(ng)-1)/ndefADJ(ng)))/ & & nADJ(ng) ELSE ADM(ng)%Rindex=(ntstart(ng)-1)/nADJ(ng) END IF ADM(ng)%Rindex=MIN(ADM(ng)%Rindex,rec_size) END IF QUERY ! 10 FORMAT (3x,'AD_DEF_HIS - creating adjoint file: ',a) 20 FORMAT (3x,'AD_DEF_HIS - inquiring adjoint file: ',a) 30 FORMAT (/,' AD_DEF_HIS - unable to create adjoint NetCDF file: ', & & a) 40 FORMAT ('adjoint',1x,a) 50 FORMAT (1pe11.4,1x,'millimeter') 60 FORMAT (/,' AD_DEF_HIS - unable to open adjoint NetCDF file: ',a) 70 FORMAT (/,' AD_DEF_HIS - unable to find variable: ',a,2x, & & ' in adjoint NetCDF file: ',a) RETURN END SUBROUTINE ad_def_his #else SUBROUTINE ad_def_his RETURN END SUBROUTINE ad_def_his #endif