#include "cppdefs.h" MODULE ad_wvelocity_mod #if defined ADJOINT && defined SOLVE3D ! !======================================================================= ! Copyright (c) 2002-2019 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !=================================================== Andrew M. Moore === ! ! ! This subroutines computes vertical velocity (m/s) at W-points ! ! from the vertical mass flux (omega*hz/m*n). This computation ! ! is done solely for output purposes. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ad_wvelocity CONTAINS ! !*********************************************************************** SUBROUTINE ad_wvelocity (ng, tile, Ninp) !*********************************************************************** ! USE mod_param USE mod_coupling USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, Ninp ! ! Local variable declarations. ! # include "tile.h" ! CALL ad_wvelocity_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & Ninp, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % z_r, & & GRID(ng) % z_w, & & GRID(ng) % ad_z_r, & & GRID(ng) % ad_z_w, & & COUPLING(ng) % DU_avg1, & & COUPLING(ng) % DV_avg1, & & COUPLING(ng) % ad_DU_avg1, & & COUPLING(ng) % ad_DV_avg1, & & OCEAN(ng) % u, & & OCEAN(ng) % v, & & OCEAN(ng) % W, & & OCEAN(ng) % ad_u, & & OCEAN(ng) % ad_v, & & OCEAN(ng) % ad_W, & & OCEAN(ng) % ad_wvel) RETURN END SUBROUTINE ad_wvelocity ! !*********************************************************************** SUBROUTINE ad_wvelocity_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & Ninp, & & pm, pn, z_r, z_w, & & ad_z_r, ad_z_w, & & DU_avg1, DV_avg1, & & ad_DU_avg1, ad_DV_avg1, & & u, v, W, & & ad_u, ad_v, ad_W, & & ad_wvel) !*********************************************************************** ! USE mod_param USE mod_scalars ! USE bc_3d_mod, ONLY : bc_w3d_tile USE ad_bc_3d_mod, ONLY : ad_bc_w3d_tile USE ad_exchange_2d_mod # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : ad_mp_exchange2d, ad_mp_exchange3d # endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: Ninp ! # ifdef ASSUMED_SHAPE real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: DU_avg1(LBi:,LBj:) real(r8), intent(in) :: DV_avg1(LBi:,LBj:) real(r8), intent(in) :: u(LBi:,LBj:,:,:) real(r8), intent(in) :: v(LBi:,LBj:,:,:) real(r8), intent(in) :: W(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_z_r(LBi:,LBj:,:) real(r8), intent(inout) :: ad_z_w(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_DU_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_DV_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_u(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_v(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_W(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_wvel(LBi:,LBj:,0:) # else real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(in) :: DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(in) :: u(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(in) :: v(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(in) :: W(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(inout) :: ad_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(inout) :: ad_z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(inout) :: ad_DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_u(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(inout) :: ad_v(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(inout) :: ad_W(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(inout) :: ad_wvel(LBi:UBi,LBj:UBj,0:N(ng)) # endif ! ! Local variable declarations. ! integer :: i, j, k real(r8) :: cff1, cff2, cff3, cff4, cff5, slope , ad_slope real(r8) :: adfac, adfac1, adfac2, adfac3 real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: vert real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: ad_vert real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: wrk real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_wrk # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Compute adjoint "true" vertical velocity (m/s). !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE CALL ad_mp_exchange3d (ng, tile, iADM, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_wvel) # endif ! ! Set lateral boundary conditions. ! CALL ad_bc_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & ad_wvel) ! ! Initialize local adjoint variables and arrays. ! ad_slope=0.0_r8 DO j=JminS,JmaxS DO i=IminS,ImaxS ad_wrk(i,j)=0.0_r8 END DO END DO DO k=1,N(ng) DO j=JminS,JmaxS DO i=IminS,ImaxS ad_vert(i,j,k)=0.0_r8 END DO END DO END DO ! ! Compute vert. ! DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend+1 wrk(i,j)=u(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i-1,j,k))* & & (pm(i-1,j)+pm(i,j)) END DO DO i=Istr,Iend vert(i,j,k)=0.25_r8*(wrk(i,j)+wrk(i+1,j)) END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend wrk(i,j)=v(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i,j-1,k))* & & (pn(i,j-1)+pn(i,j)) END DO END DO DO j=Jstr,Jend DO i=Istr,Iend vert(i,j,k)=vert(i,j,k)+0.25_r8*(wrk(i,j)+wrk(i,j+1)) END DO END DO END DO ! cff1=3.0_r8/8.0_r8 cff2=3.0_r8/4.0_r8 cff3=1.0_r8/8.0_r8 cff4=9.0_r8/16.0_r8 cff5=1.0_r8/16.0_r8 J_LOOP : DO j=Jstr,Jend DO i=Istr,Iend wrk(i,j)=(DU_avg1(i,j)-DU_avg1(i+1,j)+ & & DV_avg1(i,j)-DV_avg1(i,j+1))/ & & (z_w(i,j,N(ng))-z_w(i,j,0)) END DO DO i=Istr,Iend slope=(z_w(i,j,N(ng))-z_r(i,j,N(ng) ))/ & & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) ! extrapolation slope !> tl_wvel(i,j,N(ng)-1)=pm(i,j)*pn(i,j)* & !> & (tl_W(i,j,N(ng)-1)+ & !> & tl_wrk(i,j)* & !> & (z_w(i,j,N(ng)-1)-z_w(i,j,0))+ & !> & wrk(i,j)* & !> & (tl_z_w(i,j,N(ng)-1)-tl_z_w(i,j,0)))+ & !> & cff1*tl_vert(i,j,N(ng) )+ & !> & cff2*tl_vert(i,j,N(ng)-1)- & !> & cff3*tl_vert(i,j,N(ng)-2) !> adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,N(ng)-1) adfac1=wrk(i,j)*adfac ad_W(i,j,N(ng)-1)=ad_W(i,j,N(ng)-1)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,N(ng)-1)-z_w(i,j,0))*adfac ad_z_w(i,j,N(ng)-1)=ad_z_w(i,j,N(ng)-1)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,N(ng) )=ad_vert(i,j,N(ng))+ & & cff1*ad_wvel(i,j,N(ng)-1) ad_vert(i,j,N(ng)-1)=ad_vert(i,j,N(ng)-1)+ & & cff2*ad_wvel(i,j,N(ng)-1) ad_vert(i,j,N(ng)-2)=ad_vert(i,j,N(ng)-2)- & & cff3*ad_wvel(i,j,N(ng)-1) ad_wvel(i,j,N(ng)-1)=0.0_r8 !> tl_wvel(i,j,N(ng))=pm(i,j)*pn(i,j)* & !> & (tl_wrk(i,j)* & !> & (z_w(i,j,N(ng))-z_w(i,j,0))+ & !> & wrk(i,j)* & !> & (tl_z_w(i,j,N(ng))-tl_z_w(i,j,0)))+ & !> & cff1*(tl_vert(i,j,N(ng))+ & !> & tl_slope*(vert(i,j,N(ng) )- & !> & vert(i,j,N(ng)-1))+ & !> & slope*(tl_vert(i,j,N(ng) )- & !> & tl_vert(i,j,N(ng)-1)))+ & !> & cff2*tl_vert(i,j,N(ng) )- & !> & cff3*tl_vert(i,j,N(ng)-1) !> adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,N(ng)) adfac1=wrk(i,j)*adfac adfac2=cff1*ad_wvel(i,j,N(ng)) adfac3=slope*adfac2 ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,N(ng))-z_w(i,j,0))*adfac ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))+adfac1 ad_z_w(i,j,0 )=ad_z_w(i,j,0 )-adfac1 ad_vert(i,j,N(ng))=ad_vert(i,j,N(ng))+adfac2 ad_slope=ad_slope+ & & (vert(i,j,N(ng) )-vert(i,j,N(ng)-1))*adfac2 ad_vert(i,j,N(ng) )=ad_vert(i,j,N(ng) )+ & & adfac3+cff2*ad_wvel(i,j,N(ng)) ad_vert(i,j,N(ng)-1)=ad_vert(i,j,N(ng)-1)- & & adfac3-cff3*ad_wvel(i,j,N(ng)) ad_wvel(i,j,N(ng))=0.0_r8 !> tl_slope=(tl_z_w(i,j,N(ng))-tl_z_r(i,j,N(ng) ))/ & !> & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1))- & !> & (tl_z_r(i,j,N(ng))-tl_z_r(i,j,N(ng)-1))*slope/ & !> & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) !> adfac1=ad_slope/(z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) adfac2=slope*adfac1 ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))+adfac1 ad_z_r(i,j,N(ng) )=ad_z_r(i,j,N(ng) )-adfac1-adfac2 ad_z_r(i,j,N(ng)-1)=ad_z_r(i,j,N(ng)-1)+adfac2 ad_slope=0.0_r8 END DO DO k=2,N(ng)-2 DO i=Istr,Iend !> tl_wvel(i,j,k)=pm(i,j)*pn(i,j)* & !> & (tl_W(i,j,k)+ & !> & tl_wrk(i,j)*(z_w(i,j,k)-z_w(i,j,0))+ & !> & wrk(i,j)*(tl_z_w(i,j,k)-tl_z_w(i,j,0)))+ & !> & cff4*(tl_vert(i,j,k )+tl_vert(i,j,k+1))- & !> & cff5*(tl_vert(i,j,k-1)+tl_vert(i,j,k+2)) !> adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,k) adfac1=wrk(i,j)*adfac adfac2=cff4*ad_wvel(i,j,k) adfac3=cff5*ad_wvel(i,j,k) ad_W(i,j,k)=ad_W(i,j,k)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,k)-z_w(i,j,0))*adfac ad_z_w(i,j,k)=ad_z_w(i,j,k)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,k )=ad_vert(i,j,k )+adfac2 ad_vert(i,j,k+1)=ad_vert(i,j,k+1)+adfac2 ad_vert(i,j,k-1)=ad_vert(i,j,k-1)-adfac3 ad_vert(i,j,k+2)=ad_vert(i,j,k+2)-adfac3 ad_wvel(i,j,k)=0.0_r8 END DO END DO DO i=Istr,Iend slope=(z_r(i,j,1)-z_w(i,j,0))/ & & (z_r(i,j,2)-z_r(i,j,1)) ! extrapolation slope !> tl_wvel(i,j,1)=pm(i,j)*pn(i,j)* & !> & (tl_W(i,j,1)+ & !> & tl_wrk(i,j)*(z_w(i,j,1)-z_w(i,j,0))+ & !> & wrk(i,j)*(tl_z_w(i,j,1)-tl_z_w(i,j,0)))+ & !> & cff1*tl_vert(i,j,1)+ & !> & cff2*tl_vert(i,j,2)- & !> & cff3*tl_vert(i,j,3) !> adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,1) adfac1=wrk(i,j)*adfac ad_W(i,j,1)=ad_W(i,j,1)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,1)-z_w(i,j,0))*adfac ad_z_w(i,j,1)=ad_z_w(i,j,1)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+cff1*ad_wvel(i,j,1) ad_vert(i,j,2)=ad_vert(i,j,2)+cff2*ad_wvel(i,j,1) ad_vert(i,j,3)=ad_vert(i,j,3)-cff3*ad_wvel(i,j,1) ad_wvel(i,j,1)=0.0_r8 !> tl_wvel(i,j,0)=cff1*(tl_vert(i,j,1)- & !> & tl_slope*(vert(i,j,2)- & !> & vert(i,j,1))- & !> & slope*(tl_vert(i,j,2)- & !> & tl_vert(i,j,1)))+ & !> & cff2*tl_vert(i,j,1)- & !> & cff3*tl_vert(i,j,2) !> adfac=cff1*ad_wvel(i,j,0) adfac1=slope*adfac ad_vert(i,j,1)=ad_vert(i,j,1)+adfac ad_slope=ad_slope-(vert(i,j,2)-vert(i,j,1))*adfac ad_vert(i,j,2)=ad_vert(i,j,2)-adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+cff2*ad_wvel(i,j,0) ad_vert(i,j,2)=ad_vert(i,j,2)-cff3*ad_wvel(i,j,0) ad_wvel(i,j,0)=0.0_r8 !> tl_slope=(tl_z_r(i,j,1)-tl_z_w(i,j,0))/ & !> & (z_r(i,j,2)-z_r(i,j,1))- & !> & (tl_z_r(i,j,2)-tl_z_r(i,j,1))*slope/ & !> & (z_r(i,j,2)-z_r(i,j,1)) !> adfac=ad_slope/(z_r(i,j,2)-z_r(i,j,1)) adfac1=slope*adfac ad_z_r(i,j,1)=ad_z_r(i,j,1)+adfac ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac ad_z_r(i,j,2)=ad_z_r(i,j,2)-adfac1 ad_z_r(i,j,1)=ad_z_r(i,j,1)+adfac1 ad_slope=0.0_r8 END DO DO i=Istr,Iend !> tl_wrk(i,j)=(tl_DU_avg1(i,j)-tl_DU_avg1(i+1,j)+ & !> & tl_DV_avg1(i,j)-tl_DV_avg1(i,j+1))/ & !> & (z_w(i,j,N(ng))-z_w(i,j,0))- & !> & (tl_z_w(i,j,N(ng))-tl_z_w(i,j,0))*wrk(i,j)/ & !> & (z_w(i,j,N(ng))-z_w(i,j,0)) !> adfac=ad_wrk(i,j)/(z_w(i,j,N(ng))-z_w(i,j,0)) adfac1=wrk(i,j)*adfac ad_DU_avg1(i ,j)=ad_DU_avg1(i ,j)+adfac ad_DU_avg1(i+1,j)=ad_DU_avg1(i+1,j)-adfac ad_DV_avg1(i,j )=ad_DV_avg1(i,j )+adfac ad_DV_avg1(i,j+1)=ad_DV_avg1(i,j+1)-adfac ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))-adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)+adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO J_LOOP DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend !> tl_vert(i,j,k)=tl_vert(i,j,k)+ & !> & 0.25_r8*(tl_wrk(i,j)+tl_wrk(i,j+1)) !> adfac=0.25_r8*ad_vert(i,j,k) ad_wrk(i,j )=ad_wrk(i,j )+adfac ad_wrk(i,j+1)=ad_wrk(i,j+1)+adfac END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend !> tl_wrk(i,j)=(pn(i,j-1)+pn(i,j))* & !> & (tl_v(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i,j-1,k))+ & !> & v(i,j,k,Ninp)*(tl_z_r(i,j,k)-tl_z_r(i,j-1,k))) !> adfac=(pn(i,j-1)+pn(i,j))*ad_wrk(i,j) adfac1=v(i,j,k,Ninp)*adfac ad_v(i,j,k,Ninp)=ad_v(i,j,k,Ninp)+ & & (z_r(i,j,k)-z_r(i,j-1,k))*adfac ad_z_r(i,j ,k)=ad_z_r(i,j ,k)+adfac1 ad_z_r(i,j-1,k)=ad_z_r(i,j-1,k)-adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=Istr,Iend !> tl_vert(i,j,k)=0.25_r8*(tl_wrk(i,j)+tl_wrk(i+1,j)) !> adfac=0.25_r8*ad_vert(i,j,k) ad_wrk(i ,j)=ad_wrk(i ,j)+adfac ad_wrk(i+1,j)=ad_wrk(i+1,j)+adfac ad_vert(i,j,k)=0.0_r8 END DO DO i=Istr,Iend+1 !> tl_wrk(i,j)=(pm(i-1,j)+pm(i,j))* & !> & (tl_u(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i-1,j,k))+ & !> & u(i,j,k,Ninp)*(tl_z_r(i,j,k)-tl_z_r(i-1,j,k))) !> adfac=(pm(i-1,j)+pm(i,j))*ad_wrk(i,j) adfac1=u(i,j,k,Ninp)*adfac ad_u(i,j,k,Ninp)=ad_u(i,j,k,Ninp)+ & & (z_r(i,j,k)-z_r(i-1,j,k))*adfac ad_z_r(i ,j,k)=ad_z_r(i ,j,k)+adfac1 ad_z_r(i-1,j,k)=ad_z_r(i-1,j,k)-adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO END DO ! ! Exchange time-averaged fields. ! # ifdef DISTRIBUTE CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_DU_avg1, ad_DV_avg1) # endif IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DU_avg1) CALL ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DV_avg1) END IF RETURN END SUBROUTINE ad_wvelocity_tile #endif END MODULE ad_wvelocity_mod