MODULE ocean_control_mod ! !svn $Id: w4dvar_ocean.h 937 2019-01-28 06:13:04Z arango $ !=================================================== Andrew M. Moore === ! Copyright (c) 2002-2019 The ROMS/TOMS Group Hernan G. Arango ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! ROMS/TOMS Strong/Weak Constraint 4-Dimensional Variational Data ! ! Assimilation Driver: Indirect Representer Approach ! ! (R4D-Var). Dual formulation in observarion space. ! ! ! ! This driver is used for strong/weak constraint 4D-Var where errors ! ! may be considered in both model and observations. ! ! ! ! The routines in this driver control the initialization, time- ! ! stepping, and finalization of ROMS/TOMS model following ESMF ! ! conventions: ! ! ! ! ROMS_initialize ! ! ROMS_run ! ! ROMS_finalize ! ! ! ! References: ! ! ! ! Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, A.T. Weaver, ! ! and J. Zavala-Garay, 2011: The Regional Ocean Modeling System ! ! (ROMS) 4-dimensional variational data assimilations systems, ! ! Part I - System overview and formulation, Prog. Oceanogr., 91, ! ! 34-49, doi:10.1016/j.pocean.2011.05.004. ! ! ! ! Moore, A.M., H.G. Arango, G. Broquet, C. Edward, M. Veneziani, ! ! B. Powell, D. Foley, J.D. Doyle, D. Costa, and P. Robinson, ! ! 2011: The Regional Ocean Modeling System (ROMS) 4-dimensional ! ! variational data assimilations systems, Part II - Performance ! ! and application to the California Current System, Prog. ! ! Oceanogr., 91, 50-73, doi:10.1016/j.pocean.2011.05.003. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ROMS_initialize PUBLIC :: ROMS_run PUBLIC :: ROMS_finalize CONTAINS SUBROUTINE ROMS_initialize (first, mpiCOMM) ! !======================================================================= ! ! ! This routine allocates and initializes ROMS/TOMS state variables ! ! and internal and external parameters. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_fourdvar USE mod_iounits USE mod_scalars ! #ifdef MCT_LIB # ifdef ATM_COUPLING USE ocean_coupler_mod, ONLY : initialize_ocn2atm_coupling # endif # ifdef WAV_COUPLING USE ocean_coupler_mod, ONLY : initialize_ocn2wav_coupling # endif #endif USE strings_mod, ONLY : FoundError ! ! Imported variable declarations. ! logical, intent(inout) :: first integer, intent(in), optional :: mpiCOMM ! ! Local variable declarations. ! logical :: allocate_vars = .TRUE. #ifdef DISTRIBUTE integer :: MyError, MySize #endif integer :: STDrec, Tindex integer :: chunk_size, ng, thread #ifdef _OPENMP integer :: my_threadnum #endif #ifdef DISTRIBUTE ! !----------------------------------------------------------------------- ! Set distribute-memory (mpi) world communictor. !----------------------------------------------------------------------- ! IF (PRESENT(mpiCOMM)) THEN OCN_COMM_WORLD=mpiCOMM ELSE OCN_COMM_WORLD=MPI_COMM_WORLD END IF CALL mpi_comm_rank (OCN_COMM_WORLD, MyRank, MyError) CALL mpi_comm_size (OCN_COMM_WORLD, MySize, MyError) #endif ! !----------------------------------------------------------------------- ! On first pass, initialize model parameters a variables for all ! nested/composed grids. Notice that the logical switch "first" ! is used to allow multiple calls to this routine during ensemble ! configurations. !----------------------------------------------------------------------- ! IF (first) THEN first=.FALSE. ! ! Initialize parallel control switches. These scalars switches are ! independent from standard input parameters. ! CALL initialize_parallel ! ! Read in model tunable parameters from standard input. Allocate and ! initialize variables in several modules after the number of nested ! grids and dimension parameters are known. ! CALL inp_par (iNLM) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Set domain decomposition tile partition range. This range is ! computed only once since the "first_tile" and "last_tile" values ! are private for each parallel thread/node. ! !$OMP PARALLEL #if defined _OPENMP MyThread=my_threadnum() #elif defined DISTRIBUTE MyThread=MyRank #else MyThread=0 #endif DO ng=1,Ngrids chunk_size=(NtileX(ng)*NtileE(ng)+numthreads-1)/numthreads first_tile(ng)=MyThread*chunk_size last_tile (ng)=first_tile(ng)+chunk_size-1 END DO !$OMP END PARALLEL ! ! Initialize internal wall clocks. Notice that the timings does not ! includes processing standard input because several parameters are ! needed to allocate clock variables. ! IF (Master) THEN WRITE (stdout,10) 10 FORMAT (/,' Process Information:',/) END IF ! DO ng=1,Ngrids !$OMP PARALLEL DO thread=THREAD_RANGE CALL wclock_on (ng, iNLM, 0, __LINE__, __FILE__) END DO !$OMP END PARALLEL END DO ! ! Allocate and initialize modules variables. ! !$OMP PARALLEL CALL mod_arrays (allocate_vars) !$OMP END PARALLEL ! ! Allocate and initialize observation arrays. ! CALL initialize_fourdvar END IF #if defined MCT_LIB && (defined ATM_COUPLING || defined WAV_COUPLING) ! !----------------------------------------------------------------------- ! Initialize coupling streams between model(s). !----------------------------------------------------------------------- ! DO ng=1,Ngrids # ifdef ATM_COUPLING CALL initialize_ocn2atm_coupling (ng, MyRank) # endif # ifdef WAV_COUPLING CALL initialize_ocn2wav_coupling (ng, MyRank) # endif END DO #endif ! !----------------------------------------------------------------------- ! Read in standard deviation factors for error covariance. !----------------------------------------------------------------------- ! ! Initial conditions standard deviation. They are loaded in Tindex=1 ! of the e_var(...,Tindex) state variables. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 10, 10, STD(1,ng)%name, STDrec, Tindex) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Model error standard deviation. They are loaded in Tindex=2 ! of the e_var(...,Tindex) state variables. ! STDrec=1 Tindex=2 IF (NSA.eq.2) THEN DO ng=1,Ngrids CALL get_state (ng, 11, 11, STD(2,ng)%name, STDrec, Tindex) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END IF #ifdef ADJUST_BOUNDARY ! ! Open boundary conditions standard deviation. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 12, 12, STD(3,ng)%name, STDrec, Tindex) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX ! ! Surface forcing standard deviation. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 13, 13, STD(4,ng)%name, STDrec, Tindex) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #endif ! !----------------------------------------------------------------------- ! Create 4D-Var analysis file that used as initial conditions for the ! next data assimilation cycle. !----------------------------------------------------------------------- ! DO ng=1,Ngrids LdefDAI(ng)=.TRUE. CALL def_dai (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO RETURN END SUBROUTINE ROMS_initialize SUBROUTINE ROMS_run (RunInterval) ! !======================================================================= ! ! ! This routine time-steps ROMS/TOMS nonlinear, tangent linear and ! ! adjoint models. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_fourdvar USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_scalars USE mod_stepping ! USE convolve_mod, ONLY : convolve USE convolve_mod, ONLY : error_covariance USE ini_adjust_mod, ONLY : load_TLtoAD #ifdef ADJUST_BOUNDARY USE mod_boundary, ONLY : initialize_boundary #endif USE mod_forces, ONLY : initialize_forces USE mod_ocean, ONLY : initialize_ocean USE normalization_mod, ONLY : normalization #if defined POSTERIOR_EOFS || defined POSTERIOR_ERROR_I || \ defined POSTERIOR_ERROR_F USE posterior_mod, ONLY : posterior USE random_ic_mod, ONLY : random_ic #endif #if defined POSTERIOR_ERROR_I || defined POSTERIOR_ERROR_F USE posterior_var_mod, ONLY : posterior_var #endif USE strings_mod, ONLY : FoundError #if defined BALANCE_OPERATOR && defined ZETA_ELLIPTIC USE zeta_balance_mod, ONLY : balance_ref, biconj #endif ! ! Imported variable declarations ! real(dp), intent(in) :: RunInterval ! seconds ! ! Local variable declarations. ! logical :: Lcgini, Linner, Lposterior, add #ifdef POSTERIOR_EOFS logical :: Ltrace #endif integer :: my_inner, my_outer integer :: Lbck, Lini, Rec, Rec1, Rec2 integer :: i, ng, status, tile integer :: Fcount, NRMrec integer, dimension(Ngrids) :: Nrec character (len=6 ) :: driver character (len=20) :: string ! !======================================================================= ! Run model for all nested grids, if any. !======================================================================= ! ! Initialize relevant parameters. ! DO ng=1,Ngrids #if defined ADJUST_STFLUX || defined ADJUST_WSTRESS Lfinp(ng)=1 ! forcing index for input Lfout(ng)=1 ! forcing index for output history files #endif #ifdef ADJUST_BOUNDARY Lbinp(ng)=1 ! boundary index for input Lbout(ng)=1 ! boundary index for output history files #endif Lold(ng)=1 ! old minimization time index Lnew(ng)=2 ! new minimization time index END DO Lini=1 ! NLM initial conditions record in INI Lbck=2 ! background record in INI Rec1=1 Rec2=2 Nrun=1 outer=0 inner=0 ERstr=1 ERend=Nouter driver='w4dvar' ! !----------------------------------------------------------------------- ! Configure weak constraint 4DVAR algorithm: Indirect Representer ! Approach. !----------------------------------------------------------------------- ! ! Initialize the switch to gather weak constraint forcing. ! DO ng=1,Ngrids WRTforce(ng)=.FALSE. END DO ! ! Initialize and set nonlinear model initial conditions. ! DO ng=1,Ngrids wrtNLmod(ng)=.TRUE. wrtRPmod(ng)=.FALSE. wrtTLmod(ng)=.FALSE. END DO !$OMP PARALLEL CALL initial !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Save nonlinear initial conditions (currently in time index 1, ! background) into record "Lini" of INI(ng)%name NetCDF file. The ! record "Lbck" becomes the background state record and the record ! "Lini" becomes current nonlinear initial conditions. ! DO ng=1,Ngrids INI(ng)%Rindex=1 Fcount=INI(ng)%Fcount INI(ng)%Nrec(Fcount)=1 CALL wrt_ini (ng, 1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Set nonlinear output history file as the initial basic state ! trajectory. ! DO ng=1,Ngrids LdefHIS(ng)=.TRUE. LwrtHIS(ng)=.TRUE. WRITE (HIS(ng)%name,10) TRIM(FWD(ng)%base), outer END DO #if defined BULK_FLUXES && defined NL_BULK_FLUXES ! ! Set file name containing the nonlinear model bulk fluxes to be read ! and processed by other algorithms. ! DO ng=1,Ngrids BLK(ng)%name=HIS(ng)%name END DO #endif ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Model-error covariance normalization and stardard deviation factors. !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! ! Compute or read in the error correlation normalization factors. ! If computing, write out factors to NetCDF. This is an expensive ! computation that needs to be computed only once for a particular ! application grid and decorrelation scales. ! DO ng=1,Ngrids IF (ANY(LwrtNRM(:,ng))) THEN CALL def_norm (ng, iNLM, 1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN IF (NSA.eq.2) THEN CALL def_norm (ng, iNLM, 2) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF #ifdef ADJUST_BOUNDARY CALL def_norm (ng, iNLM, 3) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX CALL def_norm (ng, iNLM, 4) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL normalization (ng, tile, 2) END DO !$OMP END PARALLEL LdefNRM(1:4,ng)=.FALSE. LwrtNRM(1:4,ng)=.FALSE. ELSE NRMrec=1 CALL get_state (ng, 14, 14, NRM(1,ng)%name, NRMrec, 1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN IF (NSA.eq.2) THEN CALL get_state (ng, 15, 15, NRM(2,ng)%name, NRMrec, 2) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF #ifdef ADJUST_BOUNDARY CALL get_state (ng, 16, 16, NRM(3,ng)%name, NRMrec, 1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX CALL get_state (ng, 17, 17, NRM(4,ng)%name, NRMrec, 1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif END IF END DO ! ! Define tangent linear initial conditions file. ! DO ng=1,Ngrids LdefITL(ng)=.TRUE. CALL tl_def_ini (ng) LdefITL(ng)=.FALSE. IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Define TLM/RPM impulse forcing NetCDF file. ! DO ng=1,Ngrids LdefTLF(ng)=.TRUE. CALL def_impulse (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Define output 4DVAR NetCDF file containing all processed data ! at observation locations. ! DO ng=1,Ngrids LdefMOD(ng)=.TRUE. CALL def_mod (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #if defined POSTERIOR_EOFS || defined POSTERIOR_ERROR_I || \ defined POSTERIOR_ERROR_F ! ! Define output Hessian NetCDF file that will eventually contain ! the intermediate posterior analysis error covariance matrix ! fields or its EOFs. ! DO ng=1,Ngrids LdefHSS(ng)=.TRUE. CALL def_hessian (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #endif #if defined POSTERIOR_ERROR_I || defined POSTERIOR_ERROR_F ! ! Define output initial or final full posterior error covariance ! (diagonal) matrix NetCDF. ! DO ng=1,Ngrids LdefERR (ng)=.TRUE. CALL def_error (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #endif ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Run nonlinear model and compute basic state trajectory. It processes ! and writes the observations accept/reject flag (ObsScale) once to ! allow background quality control, if any. !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! DO ng=1,Ngrids #ifdef RP_AVERAGES LdefAVG(ng)=.FALSE. LwrtAVG(ng)=.FALSE. #endif wrtObsScale(ng)=.TRUE. IF (Master) THEN WRITE (stdout,20) 'NL', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL #ifdef SOLVE3D CALL main3d (RunInterval) #else CALL main2d (RunInterval) #endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN DO ng=1,Ngrids wrtNLmod(ng)=.FALSE. wrtObsScale(ng)=.FALSE. END DO ! ! Set forward basic state NetCDF ID to nonlinear model trajectory to ! avoid the inquiring stage. ! DO ng=1,Ngrids FWD(ng)%ncid=HIS(ng)%ncid END DO ! !----------------------------------------------------------------------- ! Solve the system: ! ! (R_n + Cobs) * Beta_n = h_n ! ! h_n = Xo - H * X_n ! ! where R_n is the representer matrix, Cobs is the observation-error ! covariance, Beta_n are the representer coefficients, h_n is the ! misfit between observations (Xo) and model (H * X_n), and H is ! the linearized observation operator. Here, _n denotes a sequence ! of estimates. ! ! The system does not need to be solved explicitly by inverting the ! symmetric stabilized representer matrix, P_n: ! ! P_n = R_n + Cobs ! ! but by computing the action of P_n on any vector PSI, such that ! ! P_n * PSI = R_n * PSI + Cobs * PSI ! ! The representer matrix is not explicitly computed but evaluated by ! one integration backward of the adjoint model and one integration ! forward of the tangent linear model for any forcing vector PSI. ! ! A preconditioned conjugate gradient algorithm is used to compute ! an approximation PSI for Beta_n. ! !----------------------------------------------------------------------- ! OUTER_LOOP : DO my_outer=1,Nouter outer=my_outer inner=0 ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Run representer model and compute a "prior estimate" state ! trajectory, X_n(t). Use linearized state trajectory (X_n-1) as ! basic state. !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! ! Set representer model basic state trajectory file to previous outer ! loop file (outer-1). If outer=1, the basic state trajectory is the ! nonlinear model. ! DO ng=1,Ngrids WRITE (FWD(ng)%name,10) TRIM(FWD(ng)%base), outer-1 END DO ! ! Set representer model output file name. The strategy is to write ! the representer solution at the beginning of each outer loop. ! DO ng=1,Ngrids LdefTLM(ng)=.TRUE. LwrtTLM(ng)=.TRUE. WRITE (TLM(ng)%name,10) TRIM(TLM(ng)%base), outer END DO ! ! Activate switch to write the representer model at observation points. ! Turn off writing into history file and turn off impulse forcing. ! DO ng=1,Ngrids wrtRPmod(ng)=.TRUE. SporadicImpulse(ng)=.FALSE. FrequentImpulse(ng)=.FALSE. END DO #ifndef DATALESS_LOOPS ! ! As in the nonlinear model, initialize always the representer model ! here with the background or reference state (IRP(ng)%name, record ! Rec1). ! DO ng=1,Ngrids IRP(ng)%Rindex=Rec1 !$OMP PARALLEL CALL rp_initial (ng) !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Run representer model using the nonlinear trajectory as a basic ! state. Compute model solution at observation points, H * X_n. ! DO ng=1,Ngrids # ifdef RP_AVERAGES LdefAVG(ng)=.FALSE. LwrtAVG(ng)=.FALSE. # endif IF (Master) THEN WRITE (stdout,20) 'RP', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL # ifdef SOLVE3D CALL rp_main3d (RunInterval) # else CALL rp_main2d (RunInterval) # endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Report data penalty function. ! DO ng=1,Ngrids IF (Master) THEN DO i=0,NstateVar(ng) IF (i.eq.0) THEN string='Total' ELSE string=Vname(1,idSvar(i)) END IF IF (FOURDVAR(ng)%DataPenalty(i).ne.0.0_r8) THEN WRITE (stdout,30) outer, inner, 'RPM', & & FOURDVAR(ng)%DataPenalty(i), & & TRIM(string) END IF END DO END IF ! ! Write out initial data penalty function to NetCDF file. ! SourceFile=__FILE__ // ", ROMS_run" CALL netcdf_put_fvar (ng, iRPM, DAV(ng)%name, & & 'RP_iDataPenalty', & & FOURDVAR(ng)%DataPenalty(0:), & & (/1,outer/), (/NstateVar(ng)+1,1/), & & ncid = DAV(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Clean penalty array before next run of RP model. ! FOURDVAR(ng)%DataPenalty=0.0_r8 END DO ! ! Turn off IO switches. ! DO ng=1,Ngrids LdefTLM(ng)=.FALSE. LwrtTLM(ng)=.FALSE. wrtRPmod(ng)=.FALSE. END DO ! ! Clear tangent linear forcing arrays before entering inner-loop. ! This is very important since these arrays are non-zero after ! running the representer model and must be zero when running the ! tangent linear model. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL initialize_forces (ng, tile, iTLM) # ifdef ADJUST_BOUNDARY CALL initialize_boundary (ng, tile, iTLM) # endif END DO !$OMP END PARALLEL END DO # if defined BALANCE_OPERATOR && defined ZETA_ELLIPTIC ! ! Compute the reference zeta and biconjugate gradient arrays ! required for the balance of free surface. ! IF (balance(isFsur)) THEN DO ng=1,Ngrids CALL get_state (ng, iNLM, 2, INI(ng)%name, Lini, Lini) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL balance_ref (ng, tile, Lini) CALL biconj (ng, tile, iNLM, Lini) END DO !$OMP END PARALLEL wrtZetaRef(ng)=.TRUE. END DO END IF # endif ! INNER_LOOP : DO my_inner=0,Ninner inner=my_inner ! ! Initialize conjugate gradient algorithm depending on hot start or ! outer loop index. ! IF (inner.eq.0) THEN Lcgini=.TRUE. DO ng=1,Ngrids CALL congrad (ng, iRPM, outer, inner, Ninner, Lcgini) END DO END IF ! ! If initialization step, skip the inner-loop computations. ! Linner=.FALSE. IF ((inner.ne.0).or.(Nrun.ne.1)) THEN IF (((inner.eq.0).and.LhotStart).or.(inner.ne.0)) THEN Linner=.TRUE. END IF END IF ! ! Start inner loop computations. ! INNER_COMPUTE : IF (Linner) THEN ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Integrate adjoint model forced with any vector PSI at the observation ! locations and generate adjoint trajectory, Lambda_n(t). !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! ! Initialize the adjoint model from rest. ! DO ng=1,Ngrids !$OMP PARALLEL CALL ad_initial (ng) !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN wrtMisfit(ng)=.FALSE. END DO # ifdef RPM_RELAXATION ! ! Adjoint of representer relaxation is not applied during the ! inner-loops. ! DO ng=1,Ngrids LweakRelax(ng)=.FALSE. END DO # endif ! ! Set adjoint history NetCDF parameters. Define adjoint history ! file only once to avoid opening too many files. ! DO ng=1,Ngrids WRTforce(ng)=.TRUE. IF (Nrun.gt.1) LdefADJ(ng)=.FALSE. Fcount=ADM(ng)%Fcount ADM(ng)%Nrec(Fcount)=0 ADM(ng)%Rindex=0 END DO ! ! Time-step adjoint model backwards forced with current PSI vector. ! DO ng=1,Ngrids IF (Master) THEN WRITE (stdout,20) 'AD', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL # ifdef SOLVE3D CALL ad_main3d (RunInterval) # else CALL ad_main2d (RunInterval) # endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Write out last weak-constraint forcing (WRTforce is still .TRUE.) ! record into the adjoint history file. Note that the weak-constraint ! forcing is delayed by nADJ time-steps. ! DO ng=1,Ngrids CALL ad_wrt_his (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Write out adjoint initial condition record into the adjoint ! history file. ! DO ng=1,Ngrids WRTforce(ng)=.FALSE. CALL ad_wrt_his (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Convolve adjoint trajectory with error covariances. ! # ifdef POSTERIOR_ERROR_I Lposterior=.TRUE. # else Lposterior=.FALSE. # endif CALL error_covariance (iTLM, driver, outer, inner, & & Lbck, Lini, Lold, Lnew, & & Rec1, Rec2, Lposterior) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Convert the current adjoint solution in ADM(ng)%name to impulse ! forcing. Write out impulse forcing into TLF(ng)%name NetCDF file. ! To facilitate the forcing to the TLM and RPM, the forcing is ! processed and written in increasing time coordinates (recall that ! the adjoint solution in ADM(ng)%name is backwards in time). ! IF (Master) THEN WRITE (stdout,40) outer, inner END IF DO ng=1,Ngrids TLF(ng)%Rindex=0 # ifdef DISTRIBUTE tile=MyRank # else tile=-1 # endif CALL wrt_impulse (ng, tile, iADM, ADM(ng)%name) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Integrate tangent linear model forced by the convolved adjoint ! trajectory (impulse forcing) to compute R_n * PSI at observation ! points. !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! DO ng=1,Ngrids TLM(ng)%name=TRIM(TLM(ng)%base)//'.nc' wrtNLmod(ng)=.FALSE. wrtTLmod(ng)=.TRUE. END DO ! ! If weak constraint, the impulses are time-interpolated at each ! time-steps. ! DO ng=1,Ngrids IF (FrcRec(ng).gt.3) THEN FrequentImpulse(ng)=.TRUE. END IF END DO ! ! Initialize tangent linear model from ITL(ng)%name, record Rec1. ! DO ng=1,Ngrids ITL(ng)%Rindex=Rec1 !$OMP PARALLEL CALL tl_initial (ng) !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Activate switch to write out initial misfit between model and ! observations. ! IF ((outer.eq.1).and.(inner.eq.1)) THEN DO ng=1,Ngrids wrtMisfit(ng)=.TRUE. END DO END IF ! ! Set tangent linear history NetCDF parameters. Define tangent linear ! history file at the beggining of each inner loop to avoid opening ! too many NetCDF files. ! DO ng=1,Ngrids IF (inner.gt.1) LdefTLM(ng)=.FALSE. Fcount=TLM(ng)%Fcount TLM(ng)%Nrec(Fcount)=0 TLM(ng)%Rindex=0 END DO ! ! Run tangent linear model forward and force with convolved adjoint ! trajectory impulses. Compute R_n * PSI at observation points which ! are used in the conjugate gradient algorithm. ! DO ng=1,Ngrids IF (Master) THEN WRITE (stdout,20) 'TL', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL # ifdef SOLVE3D CALL tl_main3d (RunInterval) # else CALL tl_main2d (RunInterval) # endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN DO ng=1,Ngrids wrtNLmod(ng)=.FALSE. wrtTLmod(ng)=.FALSE. END DO # ifdef POSTERIOR_ERROR_F ! ! Copy the final time tl_var(Lold) into ad_var(Lold) so that it can be ! written to the Hessian NetCDF file. ! add=.FALSE. DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL load_TLtoAD (ng, tile, Lold(ng), Lold(ng), add) END DO !$OMP END PARALLEL END DO ! ! Write evolved tangent solution into hessian netcdf file for use ! later. ! IF (inner.ne.0) THEN DO ng=1,Ngrids CALL wrt_hessian (ng, Lold(ng), Lold(ng)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END IF # endif ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Use conjugate gradient algorithm to find a better approximation ! PSI to representer coefficients Beta_n. !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Nrun=Nrun+1 DO ng=1,Ngrids Lcgini=.FALSE. CALL congrad (ng, iRPM, outer, inner, Ninner, Lcgini) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END IF INNER_COMPUTE END DO INNER_LOOP ! ! Close tangent linear NetCDF file. ! SourceFile=__FILE__ // ", ROMS_run" DO ng=1,Ngrids CALL netcdf_close (ng, iTLM, TLM(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! !----------------------------------------------------------------------- ! Once that the representer coefficients, Beta_n, have been ! approximated with sufficient accuracy, compute estimates of ! Lambda_n and Xhat_n by carrying out one backward intergration ! of the adjoint model and one forward itegration of the representer ! model. !----------------------------------------------------------------------- ! ! Initialize the adjoint model always from rest. ! DO ng=1,Ngrids !$OMP PARALLEL CALL ad_initial (ng) !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # ifdef RPM_RELAXATION ! ! Adjoint of representer relaxation is applied during the ! outer-loops. ! DO ng=1,Ngrids LweakRelax(ng)=.TRUE. END DO # endif ! ! Set adjoint history NetCDF parameters. Define adjoint history ! file one to avoid opening to many files. ! DO ng=1,Ngrids WRTforce(ng)=.TRUE. IF (Nrun.gt.1) LdefADJ(ng)=.FALSE. Fcount=ADM(ng)%Fcount ADM(ng)%Nrec(Fcount)=0 ADM(ng)%Rindex=0 END DO ! ! Time-step adjoint model backwards forced with estimated representer ! coefficients, Beta_n. ! DO ng=1,Ngrids IF (Master) THEN WRITE (stdout,20) 'AD', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL # ifdef SOLVE3D CALL ad_main3d (RunInterval) # else CALL ad_main2d (RunInterval) # endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Write out last weak-constraint forcing (WRTforce is still .TRUE.) ! record into the adjoint history file. Note that the weak-constraint ! forcing is delayed by nADJ time-steps. ! DO ng=1,Ngrids CALL ad_wrt_his (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Write out adjoint initial condition record into the adjoint ! history file. ! DO ng=1,Ngrids WRTforce(ng)=.FALSE. CALL ad_wrt_his (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Convolve adjoint trajectory with error covariances. ! Lposterior=.FALSE. CALL error_covariance (iRPM, driver, outer, inner, & & Lbck, Lini, Lold, Lnew, & & Rec1, Rec2, Lposterior) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Convert the current adjoint solution in ADM(ng)%name to impulse ! forcing. Write out impulse forcing into TLF(ng)%name NetCDF file. ! To facilitate the forcing to the TLM and RPM, the forcing is ! processed and written in increasing time coordinates (recall that ! the adjoint solution in ADM(ng)%name is backwards in time). ! IF (Master) THEN WRITE (stdout,40) outer, inner END IF DO ng=1,Ngrids TLF(ng)%Rindex=0 # ifdef DISTRIBUTE tile=MyRank # else tile=-1 # endif CALL wrt_impulse (ng, tile, iADM, ADM(ng)%name) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO #endif /* !DATALESS_LOOPS */ ! !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! Run representer model and compute a "new estimate" of the state ! trajectory, X_n(t). !::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! ! Set new basic state trajectory for next outer loop. ! DO ng=1,Ngrids LdefTLM(ng)=.TRUE. LwrtTLM(ng)=.TRUE. wrtNLmod(ng)=.FALSE. wrtTLmod(ng)=.TRUE. wrtRPmod(ng)=.TRUE. WRITE (TLM(ng)%name,10) TRIM(FWD(ng)%base), outer END DO ! ! If weak constraint, the impulses are time-interpolated at each ! time-steps. ! DO ng=1,Ngrids IF (FrcRec(ng).gt.3) THEN FrequentImpulse(ng)=.TRUE. END IF END DO ! ! Initialize representer model IRP(ng)%name file, record Rec2. ! DO ng=1,Ngrids #ifdef DATALESS_LOOPS IRP(ng)%Rindex=Rec1 #else IRP(ng)%Rindex=Rec2 #endif !$OMP PARALLEL CALL rp_initial (ng) !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Activate switch to write out final misfit between model and ! observations. ! IF (outer.eq.Nouter) THEN DO ng=1,Ngrids wrtMisfit(ng)=.TRUE. END DO END IF ! ! Run representer model using previous linearized trajectory, X_n-1, as ! basic state and forced with convolved adjoint trajectory impulses. ! DO ng=1,Ngrids #ifdef RP_AVERAGES LdefAVG(ng)=.TRUE. LwrtAVG(ng)=.TRUE. WRITE (AVG(ng)%name,10) TRIM(AVG(ng)%base), outer #endif IF (Master) THEN WRITE (stdout,20) 'RP', ng, ntstart(ng), ntend(ng) END IF END DO !$OMP PARALLEL #ifdef SOLVE3D CALL rp_main3d (RunInterval) #else CALL rp_main2d (RunInterval) #endif !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef RP_AVERAGES DO ng=1,Ngrids LdefAVG(ng)=.FALSE. LwrtAVG(ng)=.FALSE. END DO #endif ! ! Report data penalty function. ! DO ng=1,Ngrids IF (Master) THEN DO i=0,NstateVar(ng) IF (i.eq.0) THEN string='Total' ELSE string=Vname(1,idSvar(i)) END IF IF (FOURDVAR(ng)%DataPenalty(i).ne.0.0_r8) THEN WRITE (stdout,30) outer, inner, 'RPM', & & FOURDVAR(ng)%DataPenalty(i), & & TRIM(string) #ifdef DATALESS_LOOPS WRITE (stdout,30) outer, inner, 'NLM', & & FOURDVAR(ng)%NLPenalty(i), & & TRIM(string) #endif END IF END DO END IF END DO ! ! Write out final data penalty function to NetCDF file. ! SourceFile=__FILE__ // ", ROMS_run" DO ng=1,Ngrids CALL netcdf_put_fvar (ng, iRPM, DAV(ng)%name, & & 'RP_fDataPenalty', & & FOURDVAR(ng)%DataPenalty(0:), & & (/1,outer/), (/NstateVar(ng)+1,1/), & & ncid = DAV(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Clean array before next run of RP model. ! DO ng=1,Ngrids FOURDVAR(ng)%DataPenalty=0.0_r8 #ifdef DATALESS_LOOPS FOURDVAR(ng)%NLPenalty=0.0_r8 #endif wrtNLmod(ng)=.FALSE. wrtTLmod(ng)=.FALSE. END DO ! ! Close current forward NetCDF file. ! DO ng=1,Ngrids CALL netcdf_close (ng, iRPM, FWD(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END DO OUTER_LOOP #if defined POSTERIOR_ERROR_I || defined POSTERIOR_ERROR_F ! !----------------------------------------------------------------------- ! Compute full (diagonal) posterior analysis error covariance matrix. ! ! NOTE: Currently, this code only works for a single outer-loop. !----------------------------------------------------------------------- ! ! Clear tangent and adjoint arrays because they are used as ! work arrays below. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL initialize_ocean (ng, tile, iADM) CALL initialize_ocean (ng, tile, iTLM) CALL initialize_forces (ng, tile, iADM) CALL initialize_forces (ng, tile, iTLM) # ifdef ADJUST_BOUNDARY CALL initialize_boundary (ng, tile, iADM) CALL initialize_boundary (ng, tile, iTLM) # endif END DO !$OMF END PARALLEL END DO ! ! Compute the diagonal of the posterior/analysis error covariance ! matrix. The result is written to record 2 of the ITL netcdf file. ! VAR_OLOOP : DO my_outer=1,Nouter outer=my_outer DO ng=1,Ngrids ! !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL posterior_var (ng, tile, iTLM, outer) END DO !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END DO VAR_OLOOP ! ! Write out the diagonal of the posterior/analysis covariance matrix ! which is in tl_var(Rec1) to 4DVar error NetCDF file. ! DO ng=1,Ngrids CALL wrt_error (ng, Rec1, Rec1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Clear tangent and adjoint arrays because they are used as ! work arrays below. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL initialize_ocean (ng, tile, iADM) CALL initialize_ocean (ng, tile, iTLM) CALL initialize_forces (ng, tile, iADM) CALL initialize_forces (ng, tile, iTLM) # ifdef ADJUST_BOUNDARY CALL initialize_boundary (ng, tile, iADM) CALL initialize_boundary (ng, tile, iTLM) # endif END DO !$OMF END PARALLEL END DO #endif #ifdef POSTERIOR_EOFS ! !----------------------------------------------------------------------- ! Compute the posterior analysis error covariance matrix EOFs using a ! Lanczos algorithm. ! ! NOTE: Currently, this code only works for a single outer-loop. !----------------------------------------------------------------------- ! IF (Master) WRITE (stdout,50) ! ! Estimate first the trace of the posterior analysis error ! covariance matrix since the evolved and convolved Lanczos ! vectors stored in the Hessian NetCDF file will be destroyed ! later. ! Ltrace=.TRUE. TRACE_OLOOP : DO my_outer=1,Nouter outer=my_outer inner=0 TRACE_ILOOP : DO my_inner=1,NpostI inner=my_inner ! ! Initialize the tangent linear variables with a random vector ! comprised of +1 and -1 elements randomly chosen. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL random_ic (ng, tile, iTLM, inner, outer, & & Lold(ng), Ltrace) END DO !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Apply horizontal convolution. ! CALL convolve (driver, Lini, Lold, Lnew) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Compute Lanczos vector and eigenvectors of the posterior analysis ! error covariance matrix. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL posterior (ng, tile, iTLM, inner, outer, Ltrace) END DO !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END DO TRACE_ILOOP END DO TRACE_OLOOP ! ! Estimate posterior analysis error covariance matrix. ! Ltrace=.FALSE. POST_OLOOP : DO my_outer=1,Nouter outer=my_outer inner=0 ! ! The Lanczos algorithm requires to save all the Lanczos vectors. ! They are used to compute the posterior EOFs. ! DO ng=1,Ngrids ADM(ng)%Rindex=0 Fcount=ADM(ng)%Fcount ADM(ng)%Nrec(Fcount)=0 END DO POST_ILOOP : DO my_inner=0,NpostI inner=my_inner ! ! Read first record of ITL file and apply convolutions. ! ! NOTE: If inner=0, we would like to use a random starting vector. ! For now we can use what ever is in record 1. ! IF (inner.ne.0) THEN DO ng=1,Ngrids Rec=1 CALL get_state (ng, iTLM, 1, ITL(ng)%name, Rec, Lold(ng)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ELSE DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL random_ic (ng, tile, iTLM, inner, outer, & & Lold(ng), Ltrace) END DO !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END IF ! ! Apply horizontal convolution. ! CALL convolve (driver, Lini, Lold, Lnew) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Compute Lanczos vector and eigenvectors of the posterior analysis ! error covariance matrix. ! DO ng=1,Ngrids !$OMP PARALLEL DO tile=first_tile(ng),last_tile(ng),+1 CALL posterior (ng, tile, iTLM, inner, outer, Ltrace) END DO !$OMP END PARALLEL IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Write the Lanczos vectors of the posterior error covariance ! to the adjoint NetCDF file. ! DO ng=1,Ngrids # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS Lfout(ng)=Lnew(ng) # endif # ifdef ADJUST_BOUNDARY Lbout(ng)=Lnew(ng) # endif kstp(ng)=Lnew(ng) # ifdef SOLVE3D nstp(ng)=Lnew(ng) # endif LwrtState2d(ng)=.TRUE. CALL ad_wrt_his (ng) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN LwrtState2d(ng)=.FALSE. END DO ! ! Write out tangent linear model initial conditions and tangent ! linear surface forcing adjustments for next inner loop into ! ITL(ng)%name (record Rec1). ! DO ng=1,Ngrids CALL tl_wrt_ini (ng, Lnew(ng), Rec1) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO END DO POST_ILOOP END DO POST_OLOOP #endif /* POSTERIOR_EOFS */ ! ! Done. Set history file ID to closed state since we manipulated ! its indices with the forward file ID which was closed above. ! DO ng=1,Ngrids HIS(ng)%ncid=-1 END DO ! 10 FORMAT (a,'_',i3.3,'.nc') 20 FORMAT (/,1x,a,1x,'ROMS/TOMS: started time-stepping:', & & ' (Grid: ',i2.2,' TimeSteps: ',i8.8,' - ',i8.8,')',/) 30 FORMAT (' (',i3.3,',',i3.3,'): ',a,' data penalty, Jdata = ', & & 1p,e17.10,0p,t68,a) 40 FORMAT (/,' Converting Convolved Adjoint Trajectory to', & & ' Impulses: Outer = ',i3.3,' Inner = ',i3.3,/) #ifdef POSTERIOR_EOFS 50 FORMAT (/,' <<<< Posterior Analysis Error Covariance Matrix', & & ' Estimation >>>>',/) #endif RETURN END SUBROUTINE ROMS_run SUBROUTINE ROMS_finalize ! !======================================================================= ! ! ! This routine terminates ROMS/TOMS nonlinear, tangent linear, and ! ! adjoint models execution. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_iounits USE mod_ncparam USE mod_scalars ! ! Local variable declarations. ! integer :: Fcount, ng, tile, thread ! !----------------------------------------------------------------------- ! Write out 4D-Var analysis fields that used as initial conditions for ! the next data assimilation cycle. !----------------------------------------------------------------------- ! #ifdef DISTRIBUTE tile=MyRank #else tile=-1 #endif ! IF (exit_flag.eq.NoError) THEN DO ng=1,Ngrids CALL wrt_dai (ng, tile) END DO END IF ! !----------------------------------------------------------------------- ! Compute and report model-observation comparison statistics. !----------------------------------------------------------------------- ! IF (exit_flag.eq.NoError) THEN DO ng=1,Ngrids CALL stats_modobs (ng) END DO END IF ! !----------------------------------------------------------------------- ! If blowing-up, save latest model state into RESTART NetCDF file. !----------------------------------------------------------------------- ! ! If cycling restart records, write solution into record 3. ! IF (exit_flag.eq.1) THEN DO ng=1,Ngrids IF (LwrtRST(ng)) THEN IF (Master) WRITE (stdout,10) 10 FORMAT (/,' Blowing-up: Saving latest model state into ', & & ' RESTART file',/) Fcount=RST(ng)%Fcount IF (LcycleRST(ng).and.(RST(ng)%Nrec(Fcount).ge.2)) THEN RST(ng)%Rindex=2 LcycleRST(ng)=.FALSE. END IF blowup=exit_flag exit_flag=NoError CALL wrt_rst (ng) END IF END DO END IF ! !----------------------------------------------------------------------- ! Stop model and time profiling clocks, report memory requirements, and ! close output NetCDF files. !----------------------------------------------------------------------- ! ! Stop time clocks. ! IF (Master) THEN WRITE (stdout,20) 20 FORMAT (/,'Elapsed CPU time (seconds):',/) END IF ! DO ng=1,Ngrids !$OMP PARALLEL DO thread=THREAD_RANGE CALL wclock_off (ng, iNLM, 0, __LINE__, __FILE__) END DO !$OMP END PARALLEL END DO ! ! Report dynamic memory and automatic memory requirements. ! !$OMP PARALLEL CALL memory !$OMP END PARALLEL ! ! Close IO files. ! CALL close_out RETURN END SUBROUTINE ROMS_finalize END MODULE ocean_control_mod