#include "cppdefs.h" MODULE uibc_mod #ifdef ICE_MODEL !*********************************************************************** ! Compute the lateral boundary conditions on the ice U-velocity. !*********************************************************************** implicit none PRIVATE PUBLIC uibc_tile CONTAINS ! !*********************************************************************** SUBROUTINE uibc (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ice USE mod_stepping ! integer, intent(in) :: ng, tile #include "tile.h" ! CALL uibc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & liuol(ng), liunw(ng), & & ICE(ng) % ui) RETURN END SUBROUTINE uibc ! !*********************************************************************** SUBROUTINE uibc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & liuol, liunw, & & ui) !*********************************************************************** ! USE mod_param USE mod_ncparam USE mod_boundary USE mod_grid USE mod_scalars implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: liuol, liunw # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ui(LBi:,LBj:,:) # else real(r8), intent(inout) :: ui(LBi:UBi,LBj:UBj,2) # endif ! ! Local variable declarations. ! integer :: i, Imax, Imin, j, know real(r8), parameter :: eps =1.0E-20_r8 real(r8) :: Ce, Cx real(r8) :: cff, dUde, dUdt, dUdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Set time-indices !----------------------------------------------------------------------- ! know=liuol ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (LBC(iwest,isUice,ng)%radiation) THEN ! ! Western edge, implicit upstream radiation condition. ! DO j=Jstr,Jend+1 grad(Istr ,j)=ui(Istr ,j ,know)- & & ui(Istr ,j-1,know) grad(Istr+1,j)=ui(Istr+1,j ,know)- & & ui(Istr+1,j-1,know) END DO DO j=Jstr,Jend dUdt=ui(Istr+1,j,know)-ui(Istr+1,j,liunw) dUdx=ui(Istr+1,j,liunw)-ui(Istr+2,j,liunw) IF (LBC(iwest,isUice,ng)%nudging) THEN IF ((dUdt*dUdx).lt.0.0_r8) THEN tau=M2obc_in(ng,iwest) ELSE tau=M2obc_out(ng,iwest) END IF tau=tau*dt(ng) END IF IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Istr+1,j)+grad(Istr+1,j+1))).gt.0.0_r8) THEN dUde=grad(Istr+1,j ) ELSE dUde=grad(Istr+1,j+1) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) Cx=dUdt*dUdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dUdt*dUde,-cff)) # else Ce=0.0_r8 # endif ui(Istr,j,liunw)=(cff*ui(Istr ,j,know)+ & & Cx *ui(Istr+1,j,liunw)- & & MAX(Ce,0.0_r8)*grad(Istr,j )- & & MIN(Ce,0.0_r8)*grad(Istr,j+1))/ & & (cff+Cx) IF (LBC(iwest,isUice,ng)%nudging) THEN ui(Istr,j,liunw)=ui(Istr,j,liunw)+ & & tau*(BOUNDARY(ng)%ui_west(j)- & & ui(Istr,j,know)) END IF # ifdef MASKING ui(Istr,j,liunw)=ui(Istr,j,liunw)* & & GRID(ng)%umask(Istr,j) # endif END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isUice,ng)%clamped) THEN DO j=Jstr,Jend ui(1,j,liunw)=BOUNDARY(ng)%ui_west(j) # ifdef MASKING ui(1,j,liunw)=ui(1,j,liunw)* & & GRID(ng)%umask(1,j) # endif # ifdef WET_DRY ui(1,j,liunw)=ui(1,j,liunw)* & & GRID(ng)%umask_wet(1,j) # endif END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isUice,ng)%gradient) THEN DO j=Jstr,Jend ui(1,j,liunw)=ui(2,j,liunw) # ifdef MASKING ui(1,j,liunw)=ui(1,j,liunw)* & & GRID(ng)%umask(1,j) # endif # ifdef WET_DRY ui(1,j,liunw)=ui(1,j,liunw)* & & GRID(ng)%umask_wet(1,j) # endif END DO ! ! Western edge, closed boundary condition. ! ELSE IF (LBC(iwest,isUice,ng)%closed) THEN DO j=Jstr,Jend ui(1,j,liunw)=0.0_r8 END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (LBC(ieast,isUice,ng)%radiation) THEN ! ! Eastern edge, implicit upstream radiation condition. ! DO j=Jstr,Jend+1 grad(Iend ,j)=ui(Iend ,j ,know)- & & ui(Iend ,j-1,know) grad(Iend+1,j)=ui(Iend+1,j ,know)- & & ui(Iend+1,j-1,know) END DO DO j=Jstr,Jend dUdt=ui(Iend,j,know)-ui(Iend ,j,liunw) dUdx=ui(Iend,j,liunw)-ui(Iend-1,j,liunw) IF (LBC(ieast,isUice,ng)%nudging) THEN IF ((dUdt*dUdx).lt.0.0_r8) THEN tau=M2obc_in(ng,ieast) ELSE tau=M2obc_out(ng,ieast) END IF tau=tau*dt(ng) END IF IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Iend,j)+grad(Iend,j+1))).gt.0.0_r8) THEN dUde=grad(Iend,j) ELSE dUde=grad(Iend,j+1) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) Cx=dUdt*dUdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dUdt*dUde,-cff)) # else Ce=0.0_r8 # endif ui(Iend+1,j,liunw)=(cff*ui(Iend+1,j,know)+ & & Cx *ui(Iend ,j,liunw)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1))/ & & (cff+Cx) IF (LBC(ieast,isUice,ng)%nudging) THEN ui(Iend+1,j,liunw)=ui(Iend+1,j,liunw)+ & & tau*(BOUNDARY(ng)%ui_east(j)- & & ui(Iend+1,j,know)) END IF # ifdef MASKING ui(Iend+1,j,liunw)=ui(Iend+1,j,liunw)* & & GRID(ng)%umask(Iend+1,j) # endif END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isUice,ng)%clamped) THEN DO j=Jstr,Jend ui(Lm(ng)+1,j,liunw)=BOUNDARY(ng)%ui_east(j) # ifdef MASKING ui(Lm(ng)+1,j,liunw)=ui(Lm(ng)+1,j,liunw)* & & GRID(ng)%umask(Lm(ng)+1,j) # endif # ifdef WET_DRY ui(Lm(ng)+1,j,liunw)=ui(Lm(ng)+1,j,liunw)* & & GRID(ng)%umask_wet(Lm(ng)+1,j) # endif END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isUice,ng)%gradient) THEN DO j=Jstr,Jend ui(Lm(ng)+1,j,liunw)=ui(Lm(ng),j,liunw) # ifdef MASKING ui(Lm(ng)+1,j,liunw)=ui(Lm(ng)+1,j,liunw)* & & GRID(ng)%umask(Lm(ng)+1,j) # endif # ifdef WET_DRY ui(Lm(ng)+1,j,liunw)=ui(Lm(ng)+1,j,liunw)* & & GRID(ng)%umask_wet(Lm(ng)+1,j) # endif END DO ! ! Eastern edge, closed boundary condition. ! ELSE IF (LBC(ieast,isUice,ng)%closed) THEN DO j=Jstr,Jend ui(Lm(ng)+1,j,liunw)=0.0_r8 END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (LBC(isouth,isUice,ng)%radiation) THEN ! ! Southern edge, implicit upstream radiation condition. ! DO i=IstrP-1,Iend grad(i,Jstr-1)=ui(i+1,Jstr-1,know)- & & ui(i ,Jstr-1,know) grad(i,Jstr )=ui(i+1,Jstr ,know)- & & ui(i ,Jstr ,know) END DO DO i=IstrP,Iend dUdt=ui(i,Jstr,know)-ui(i,Jstr ,liunw) dUde=ui(i,Jstr,liunw)-ui(i,Jstr+1,liunw) IF (LBC(isouth,isUice,ng)%nudging) THEN IF ((dUdt*dUde).lt.0.0_r8) THEN tau=M2obc_in(ng,isouth) ELSE tau=M2obc_out(ng,isouth) END IF tau=tau*dt(ng) END IF IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jstr)+grad(i,Jstr))).gt.0.0_r8) THEN dUdx=grad(i-1,Jstr) ELSE dUdx=grad(i ,Jstr) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dUdt*dUdx,-cff)) # else Cx=0.0_r8 # endif Ce=dUdt*dUde ui(i,Jstr-1,liunw)=(cff*ui(i,Jstr-1,know)+ & & Ce *ui(i,Jstr ,liunw)- & & MAX(Cx,0.0_r8)*grad(i-1,Jstr-1)- & & MIN(Cx,0.0_r8)*grad(i ,Jstr-1))/ & & (cff+Ce) IF (LBC(isouth,isUice,ng)%nudging) THEN ui(i,Jstr-1,liunw)=ui(i,Jstr-1,liunw)+ & & tau*(BOUNDARY(ng)%ui_south(i)- & & ui(i,Jstr-1,know)) END IF # ifdef MASKING ui(i,Jstr-1,liunw)=ui(i,Jstr-1,liunw)* & & GRID(ng)%umask(i,Jstr-1) # endif END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isUice,ng)%clamped) THEN DO i=IstrP,Iend ui(i,0,liunw)=BOUNDARY(ng)%ui_south(i) # ifdef MASKING ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask(i,0) # endif # ifdef WET_DRY ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask_wet(i,0) # endif END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isUice,ng)%gradient) THEN DO i=IstrP,Iend ui(i,0,liunw)=ui(i,1,liunw) # ifdef MASKING ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask(i,0) # endif # ifdef WET_DRY ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask_wet(i,0) # endif END DO ! ! Southern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(isouth,isUice,ng)%closed) THEN IF (EWperiodic(ng)) THEN Imin=IstrP Imax=Iend ELSE Imin=Istr Imax=IendT END IF DO i=Imin,Imax ui(i,0,liunw)=gamma2(ng)*ui(i,1,liunw) # ifdef MASKING ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask(i,0) # endif # ifdef WET_DRY ui(i,0,liunw)=ui(i,0,liunw)* & & GRID(ng)%umask_wet(i,0) # endif END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (LBC(inorth,isUice,ng)%radiation) THEN ! ! Northern edge, implicit upstream radiation condition. ! DO i=IstrP-1,Iend grad(i,Jend )=ui(i+1,Jend ,know)- & & ui(i ,Jend ,know) grad(i,Jend+1)=ui(i+1,Jend+1,know)- & & ui(i ,Jend+1,know) END DO DO i=IstrP,Iend dUdt=ui(i,Jend,know)-ui(i,Jend ,liunw) dUde=ui(i,Jend,liunw)-ui(i,Jend-1,liunw) IF (LBC(inorth,isUice,ng)%nudging) THEN IF ((dUdt*dUde).lt.0.0_r8) THEN tau=M2obc_in(ng,inorth) ELSE tau=M2obc_out(ng,inorth) END IF tau=tau*dt(ng) END IF IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jend)+grad(i,Jend))).gt.0.0_r8) THEN dUdx=grad(i-1,Jend) ELSE dUdx=grad(i ,Jend) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dUdt*dUdx,-cff)) # else Cx=0.0_r8 # endif Ce=dUdt*dUde ui(i,Jend+1,liunw)=(cff*ui(i,Jend+1,know)+ & & Ce *ui(i,Jend ,liunw)- & & MAX(Cx,0.0_r8)*grad(i-1,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i ,Jend+1))/ & & (cff+Ce) # ifdef NORTH_MINUDGING IF (LBC(inorth,isUice,ng)%nudging) THEN ui(i,Jend+1,liunw)=ui(i,Jend+1,liunw)+ & & tau*(BOUNDARY(ng)%ui_north(i)- & & ui(i,Jend+1,know)) # endif # ifdef MASKING ui(i,Jend+1,liunw)=ui(i,Jend+1,liunw)* & & GRID(ng)%umask(i,Jend+1) # endif END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isUice,ng)%clamped) THEN DO i=IstrP,Iend ui(i,Mm(ng)+1,liunw)=BOUNDARY(ng)%ui_north(i) # ifdef MASKING ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask(i,Mm(ng)+1) # endif # ifdef WET_DRY ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask_wet(i,Mm(ng)+1) # endif END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isUice,ng)%gradient) THEN DO i=IstrP,Iend ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng),liunw) # ifdef MASKING ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask(i,Mm(ng)+1) # endif # ifdef WET_DRY ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask_wet(i,Mm(ng)+1) # endif END DO ! ! Northern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(inorth,isUice,ng)%closed) THEN IF (EWperiodic(ng)) THEN Imin=IstrP Imax=Iend ELSE Imin=Istr Imax=IendT END IF DO i=Imin,Imax ui(i,Mm(ng)+1,liunw)=gamma2(ng)*ui(i,Mm(ng),liunw) # ifdef MASKING ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask(i,Mm(ng)+1) # endif # ifdef WET_DRY ui(i,Mm(ng)+1,liunw)=ui(i,Mm(ng)+1,liunw)* & & GRID(ng)%umask_wet(i,Mm(ng)+1) # endif END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN ui(1,0,liunw)=0.5_r8*(ui(2,0,liunw)+ & & ui(1,1,liunw)) END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN ui(Lm(ng)+1,0,liunw)=0.5_r8*(ui(Lm(ng) ,0,liunw)+ & & ui(Lm(ng)+1,1,liunw)) END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN ui(1,Mm(ng)+1,liunw)=0.5_r8*(ui(2,Mm(ng)+1,liunw)+ & & ui(1,Mm(ng) ,liunw)) END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN ui(Lm(ng)+1,Mm(ng)+1,liunw)=0.5_r8* & & (ui(Lm(ng) ,Mm(ng)+1,liunw)+ & & ui(Lm(ng)+1,Mm(ng) ,liunw)) END IF END IF RETURN END SUBROUTINE uibc_tile #endif END MODULE uibc_mod