#include "cppdefs.h" MODULE us3dbc_mod #if defined WEC && defined SOLVE3D ! !svn $Id: us3dbc_im.F 732 2008-09-07 01:55:51Z jcwarner $ !======================================================================= ! Copyright (c) 2002-2017 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for total 3D ! ! Ustokes-velocity. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: us3dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE us3dbc (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! #include "tile.h" ! CALL us3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & OCEAN(ng) % u_stokes) RETURN END SUBROUTINE us3dbc ! !*********************************************************************** SUBROUTINE us3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & u_stokes) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_ncparam USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: u_stokes(LBi:,LBj:,:) # else real(r8), intent(inout) :: u_stokes(LBi:UBi,LBj:UBj,UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k, Imin, Imax real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx, cff, dUde, dUdt, dUdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isU3Sd,ng)%radiation) THEN DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Istr ,j)=u_stokes(Istr ,j ,k)- & & u_stokes(Istr ,j-1,k) grad(Istr+1,j)=u_stokes(Istr+1,j ,k)- & & u_stokes(Istr+1,j-1,k) END DO DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN dUdt=u_stokes(Istr+1,j,k)-u_stokes(Istr+1,j,k) dUdx=u_stokes(Istr+1,j,k)-u_stokes(Istr+2,j,k) IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Istr+1,j)+grad(Istr+1,j+1))).gt.0.0_r8) THEN dUde=grad(Istr+1,j ) ELSE dUde=grad(Istr+1,j+1) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) Cx=dUdt*dUdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dUdt*dUde,-cff)) # else Ce=0.0_r8 # endif u_stokes(Istr,j,k)=(cff*u_stokes(Istr ,j,k)+ & & Cx *u_stokes(Istr+1,j,k)- & & MAX(Ce,0.0_r8)*grad(Istr,j )- & & MIN(Ce,0.0_r8)*grad(Istr,j+1))/ & & (cff+Cx) # ifdef MASKING u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask(Istr,j) # endif # ifdef WET_DRY u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask_wet(Istr,j) # endif END IF END DO END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isU3Sd,ng)%clamped) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN u_stokes(Istr,j,k)=BOUNDARY(ng)%ustokes_west(j,k) # ifdef MASKING u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask(Istr,j) # endif # ifdef WET_DRY u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask_wet(Istr,j) # endif END IF END DO END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isU3Sd,ng)%gradient) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN u_stokes(Istr,j,k)=u_stokes(Istr+1,j,k) # ifdef MASKING u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask(Istr,j) # endif # ifdef WET_DRY u_stokes(Istr,j,k)=u_stokes(Istr,j,k)* & & GRID(ng)%umask_wet(Istr,j) # endif END IF END DO END DO ! ! Western edge, closed boundary condition. ! ELSE IF (LBC(iwest,isU3Sd,ng)%closed) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN u_stokes(Istr,j,k)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isU3Sd,ng)%radiation) THEN DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Iend ,j)=u_stokes(Iend ,j ,k)- & & u_stokes(Iend ,j-1,k) grad(Iend+1,j)=u_stokes(Iend+1,j ,k)- & & u_stokes(Iend+1,j-1,k) END DO DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN dUdt=u_stokes(Iend,j,k)-u_stokes(Iend ,j,k) dUdx=u_stokes(Iend,j,k)-u_stokes(Iend-1,j,k) IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Iend,j)+grad(Iend,j+1))).gt. & & 0.0_r8) THEN dUde=grad(Iend,j ) ELSE dUde=grad(Iend,j+1) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) Cx=dUdt*dUdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dUdt*dUde,-cff)) # else Ce=0.0_r8 # endif u_stokes(Iend+1,j,k)=(cff*u_stokes(Iend+1,j,k)+ & & Cx *u_stokes(Iend ,j,k)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1))/ & & (cff+Cx) # ifdef MASKING u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask(Iend+1,j) # endif # ifdef WET_DRY u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isU3Sd,ng)%clamped) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN u_stokes(Iend+1,j,k)=BOUNDARY(ng)%ustokes_east(j,k) # ifdef MASKING u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask(Iend+1,j) # endif # ifdef WET_DRY u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isU3Sd,ng)%gradient) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN u_stokes(Iend+1,j,k)=u_stokes(Iend,j,k) # ifdef MASKING u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask(Iend+1,j) # endif # ifdef WET_DRY u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)* & & GRID(ng)%umask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, closed boundary condition. ! ELSE IF (LBC(ieast,isU3Sd,ng)%closed) THEN DO k=1,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN u_stokes(Iend+1,j,k)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isU3Sd,ng)%radiation) THEN DO k=1,N(ng) DO i=IstrU-1,Iend grad(i,Jstr-1)=u_stokes(i+1,Jstr-1,k)- & & u_stokes(i ,Jstr-1,k) grad(i,Jstr )=u_stokes(i+1,Jstr ,k)- & & u_stokes(i ,Jstr ,k) END DO DO i=IstrU,Iend IF (LBC_apply(ng)%south(i)) THEN dUdt=u_stokes(i,Jstr,k)-u_stokes(i,Jstr ,k) dUde=u_stokes(i,Jstr,k)-u_stokes(i,Jstr+1,k) IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jstr)+grad(i,Jstr))).gt.0.0_r8) THEN dUdx=grad(i-1,Jstr) ELSE dUdx=grad(i ,Jstr) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dUdt*dUdx,-cff)) # else Cx=0.0_r8 # endif Ce=dUdt*dUde u_stokes(i,Jstr-1,k)=(cff*u_stokes(i,Jstr-1,k)+ & & Ce*u_stokes(i,Jstr ,k)- & & MAX(Cx,0.0_r8)*grad(i-1,Jstr-1)- & & MIN(Cx,0.0_r8)*grad(i ,Jstr-1))/ & & (cff+Ce) # ifdef MASKING u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask(i,Jstr-1) # endif # ifdef WET_DRY u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask_wet(i,Jstr-1) # endif END IF END DO END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isU3Sd,ng)%clamped) THEN DO k=1,N(ng) DO i=IstrU,Iend IF (LBC_apply(ng)%south(i)) THEN u_stokes(i,Jstr-1,k)=BOUNDARY(ng)%ustokes_south(i,k) # ifdef MASKING u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask(i,Jstr-1) # endif # ifdef WET_DRY u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask_wet(i,Jstr-1) # endif END IF END DO END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isU3Sd,ng)%gradient) THEN DO k=1,N(ng) DO i=IstrU,Iend IF (LBC_apply(ng)%south(i)) THEN u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr,k) # ifdef MASKING u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask(i,Jstr-1) # endif # ifdef WET_DRY u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask_wet(i,Jstr-1) # endif END IF END DO END DO ! ! Southern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(isouth,isU3Sd,ng)%closed) THEN IF (EWperiodic(ng)) THEN Imin=IstrU Imax=Iend ELSE Imin=Istr Imax=IendR END IF DO k=1,N(ng) DO i=Imin,Imax IF (LBC_apply(ng)%south(i)) THEN u_stokes(i,Jstr-1,k)=gamma2(ng)*u_stokes(i,Jstr,k) # ifdef MASKING u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask(i,Jstr-1) # endif # ifdef WET_DRY u_stokes(i,Jstr-1,k)=u_stokes(i,Jstr-1,k)* & & GRID(ng)%umask_wet(i,Jstr-1) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isU3Sd,ng)%radiation) THEN DO k=1,N(ng) DO i=IstrU-1,Iend grad(i,Jend )=u_stokes(i+1,Jend ,k)- & & u_stokes(i ,Jend ,k) grad(i,Jend+1)=u_stokes(i+1,Jend+1,k)- & & u_stokes(i ,Jend+1,k) END DO DO i=IstrU,Iend IF (LBC_apply(ng)%north(i)) THEN dUdt=u_stokes(i,Jend,k)-u_stokes(i,Jend ,k) dUde=u_stokes(i,Jend,k)-u_stokes(i,Jend-1,k) IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jend)+grad(i,Jend))).gt.0.0_r8) THEN dUdx=grad(i-1,Jend) ELSE dUdx=grad(i ,Jend) END IF cff=MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dUdt*dUdx,-cff)) # else Cx=0.0_r8 # endif Ce=dUdt*dUde u_stokes(i,Jend+1,k)=(cff*u_stokes(i,Jend+1,k)+ & & Ce *u_stokes(i,Jend ,k)- & & MAX(Cx,0.0_r8)*grad(i-1,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i ,Jend+1))/ & & (cff+Ce) # ifdef MASKING u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask(i,Jend+1) # endif # ifdef WET_DRY u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isU3Sd,ng)%clamped) THEN DO k=1,N(ng) DO i=IstrU,Iend IF (LBC_apply(ng)%north(i)) THEN u_stokes(i,Jend+1,k)=BOUNDARY(ng)%ustokes_north(i,k) # ifdef MASKING u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask(i,Jend+1) # endif # ifdef WET_DRY u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isU3Sd,ng)%gradient) THEN DO k=1,N(ng) DO i=IstrU,Iend IF (LBC_apply(ng)%north(i)) THEN u_stokes(i,Jend+1,k)=u_stokes(i,Jend,k) # ifdef MASKING u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask(i,Jend+1) # endif # ifdef WET_DRY u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(inorth,isU3Sd,ng)%closed) THEN IF (EWperiodic(ng)) THEN Imin=IstrU Imax=Iend ELSE Imin=Istr Imax=IendR END IF DO k=1,N(ng) DO i=Imin,Imax IF (LBC_apply(ng)%north(i)) THEN u_stokes(i,Jend+1,k)=gamma2(ng)*u_stokes(i,Jend,k) # ifdef MASKING u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask(i,Jend+1) # endif # ifdef WET_DRY u_stokes(i,Jend+1,k)=u_stokes(i,Jend+1,k)* & & GRID(ng)%umask_wet(i,Jend+1) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr ).and. & & LBC_apply(ng)%west (Jstr-1)) THEN DO k=1,N(ng) u_stokes(Istr,Jstr-1,k)=0.5_r8* & & (u_stokes(Istr+1,Jstr-1,k)+& & u_stokes(Istr ,Jstr ,k)) END DO END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr-1)) THEN DO k=1,N(ng) u_stokes(Iend+1,Jstr-1,k)=0.5_r8* & & (u_stokes(Iend ,Jstr-1,k)+ & & u_stokes(Iend+1,Jstr ,k)) END DO END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr ).and. & & LBC_apply(ng)%west (Jend+1)) THEN DO k=1,N(ng) u_stokes(Istr,Jend+1,k)=0.5_r8* & & (u_stokes(Istr ,Jend ,k)+ & & u_stokes(Istr+1,Jend+1,k)) END DO END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN DO k=1,N(ng) u_stokes(Iend+1,Jend+1,k)=0.5_r8* & & (u_stokes(Iend+1,Jend ,k)+ & & u_stokes(Iend ,Jend+1,k)) END DO END IF END IF END IF RETURN END SUBROUTINE us3dbc_tile #endif END MODULE us3dbc_mod