#include "cppdefs.h" MODULE vs2dbc_mod #ifdef WEC ! !svn $Id: vs2dbc_im.F 779 2008-10-04 23:15:47Z jcwarner $ !======================================================================= ! Copyright (c) 2002-2017 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for vertically ! ! integrated V-velocity. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: vs2dbc, vs2dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE vs2dbc (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! #include "tile.h" ! CALL vs2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & OCEAN(ng) % vbar_stokes) RETURN END SUBROUTINE vs2dbc ! !*********************************************************************** SUBROUTINE vs2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & vbar_stokes) !*********************************************************************** ! USE mod_param USE mod_ncparam USE mod_boundary USE mod_grid USE mod_scalars # ifdef WET_DRY USE mod_grid # endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: vbar_stokes(LBi:,LBj:) # else real(r8), intent(inout) :: vbar_stokes(LBi:UBi,LBj:UBj) # endif ! ! Local variable declarations. ! integer :: i, j, know, Jmin, Jmax real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx, cff5 real(r8) :: bry_pgr, bry_cor, bry_str, bry_val real(r8):: cff, cff1, cff2, dVde, dVdt, dVdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isV2Sd,ng)%radiation) THEN DO i=Istr,Iend+1 grad(i,Jstr )=vbar_stokes(i ,Jstr )- & & vbar_stokes(i-1,Jstr ) grad(i,Jstr+1)=vbar_stokes(i ,Jstr+1)- & & vbar_stokes(i-1,Jstr+1) END DO DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN dVdt=vbar_stokes(i,Jstr+1)-vbar_stokes(i,Jstr+1) dVde=vbar_stokes(i,Jstr+1)-vbar_stokes(i,Jstr+2) IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i,Jstr+1)+grad(i+1,Jstr+1))).gt. & & 0.0_r8) THEN dVdx=grad(i ,Jstr+1) ELSE dVdx=grad(i+1,Jstr+1) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde vbar_stokes(i,Jstr)=(cff*vbar_stokes(i,Jstr )+ & & Ce *vbar_stokes(i,Jstr+1)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr))/ & & (cff+Ce) # ifdef MASKING vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isV2Sd,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar_stokes(i,Jstr)=BOUNDARY(ng)%vbarstokes_south(i) # ifdef MASKING vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (LBC(isouth,isV2Sd,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar_stokes(i,Jstr)=0.0_r8 END IF END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isV2Sd,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr+1) # ifdef MASKING vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY vbar_stokes(i,Jstr)=vbar_stokes(i,Jstr)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isV2Sd,ng)%radiation) THEN DO i=Istr,Iend+1 grad(i,Jend )=vbar_stokes(i ,Jend )- & & vbar_stokes(i-1,Jend ) grad(i,Jend+1)=vbar_stokes(i ,Jend+1)- & & vbar_stokes(i-1,Jend+1) END DO DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN dVdt=vbar_stokes(i,Jend)-vbar_stokes(i,Jend ) dVde=vbar_stokes(i,Jend)-vbar_stokes(i,Jend-1) IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i,Jend)+grad(i+1,Jend))).gt.0.0_r8) THEN dVdx=grad(i ,Jend) ELSE dVdx=grad(i+1,Jend) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde vbar_stokes(i,Jend+1)=(cff*vbar_stokes(i,Jend+1)+ & & Ce *vbar_stokes(i,Jend )- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1))/ & & (cff+Ce) # ifdef MASKING vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isV2Sd,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar_stokes(i,Jend+1)=BOUNDARY(ng)%vbarstokes_north(i) # ifdef MASKING vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (LBC(inorth,isV2Sd,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar_stokes(i,Jend+1)=0.0_r8 END IF END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isV2Sd,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend) # ifdef MASKING vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY vbar_stokes(i,Jend+1)=vbar_stokes(i,Jend+1)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isV2Sd,ng)%radiation) THEN DO j=JstrV-1,Jend grad(Istr-1,j)=vbar_stokes(Istr-1,j+1)- & & vbar_stokes(Istr-1,j ) grad(Istr ,j)=vbar_stokes(Istr ,j+1)- & & vbar_stokes(Istr ,j ) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN dVdt=vbar_stokes(Istr,j)-vbar_stokes(Istr ,j) dVdx=vbar_stokes(Istr,j)-vbar_stokes(Istr+1,j) IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Istr,j-1)+grad(Istr,j))).gt.0.0_r8) THEN dVde=grad(Istr,j-1) ELSE dVde=grad(Istr,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif vbar_stokes(Istr-1,j)=(cff*vbar_stokes(Istr-1,j)+ & & Cx *vbar_stokes(Istr ,j)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j-1)- & & MIN(Ce,0.0_r8)*grad(Istr-1,j ))/ & & (cff+Cx) # ifdef MASKING vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isV2Sd,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN vbar_stokes(Istr-1,j)=BOUNDARY(ng)%vbarstokes_west(j) # ifdef MASKING vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isV2Sd,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN vbar_stokes(Istr-1,j)=vbar_stokes(Istr,j) # ifdef MASKING vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) # endif END IF END DO ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(iwest,isV2Sd,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%west(j)) THEN vbar_stokes(Istr-1,j)=gamma2(ng)*vbar_stokes(Istr,j) # ifdef MASKING vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY vbar_stokes(Istr-1,j)=vbar_stokes(Istr-1,j)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isV2Sd,ng)%radiation) THEN DO j=JstrV-1,Jend grad(Iend ,j)=vbar_stokes(Iend ,j+1)- & & vbar_stokes(Iend ,j ) grad(Iend+1,j)=vbar_stokes(Iend+1,j+1)- & & vbar_stokes(Iend+1,j ) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN dVdt=vbar_stokes(Iend,j)-vbar_stokes(Iend ,j) dVdx=vbar_stokes(Iend,j)-vbar_stokes(Iend-1,j) IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Iend,j-1)+grad(Iend,j))).gt.0.0_r8) THEN dVde=grad(Iend,j-1) ELSE dVde=grad(Iend,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif vbar_stokes(Iend+1,j)=(cff*vbar_stokes(Iend+1,j)+ & & Cx *vbar_stokes(Iend ,j)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j-1)- & & MIN(Ce,0.0_r8)*grad(Iend+1,j ))/ & & (cff+Cx) # ifdef MASKING vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isV2Sd,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN vbar_stokes(Iend+1,j)=BOUNDARY(ng)%vbarstokes_east(j) # ifdef MASKING vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isV2Sd,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN vbar_stokes(Iend+1,j)=vbar_stokes(Iend,j) # ifdef MASKING vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) # endif END IF END DO ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(ieast,isV2Sd,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%east(j)) THEN vbar_stokes(Iend+1,j)=gamma2(ng)*vbar_stokes(Iend,j) # ifdef MASKING vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY vbar_stokes(Iend+1,j)=vbar_stokes(Iend+1,j)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END IF END IF # if !defined EW_PERIODIC && !defined NS_PERIODIC && !defined COMPOSED_GRID ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN vbar_stokes(Istr-1,Jstr)=0.5_r8* & & (vbar_stokes(Istr ,Jstr )+ & & vbar_stokes(Istr-1,Jstr+1)) END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN vbar_stokes(Iend+1,Jstr)=0.5_r8* & & (vbar_stokes(Iend ,Jstr )+ & & vbar_stokes(Iend+1,Jstr+1)) END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN vbar_stokes(Istr-1,Jend+1)=0.5_r8* & & (vbar_stokes(Istr-1,Jend )+ & & vbar_stokes(Istr ,Jend+1)) END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN vbar_stokes(Iend+1,Jend+1)=0.5_r8* & & (vbar_stokes(Iend+1,Jend )+ & & vbar_stokes(Iend ,Jend+1)) END IF END IF END IF # endif RETURN END SUBROUTINE vs2dbc_tile #endif END MODULE vs2dbc_mod