#include "cppdefs.h" MODULE vs3dbc_mod #if defined WEC && defined SOLVE3D ! !svn $Id: vs3dbc_im.F 732 2008-09-07 01:55:51Z jcwarner $ !======================================================================= ! Copyright (c) 2002-2017 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for total 3D ! ! Vstokes-velocity. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: vs3dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE vs3dbc (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! #include "tile.h" ! CALL vs3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & OCEAN(ng) % v_stokes) RETURN END SUBROUTINE vs3dbc ! !*********************************************************************** SUBROUTINE vs3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & v_stokes) !*********************************************************************** ! USE mod_param USE mod_ncparam USE mod_boundary USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: v_stokes(LBi:,LBj:,:) # else real(r8), intent(inout) :: v_stokes(LBi:UBi,LBj:UBj,UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k, Jmin, Jmax real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx, cff, dVde, dVdt, dVdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isV3Sd,ng)%radiation) THEN DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jstr )=v_stokes(i ,Jstr ,k)- & & v_stokes(i-1,Jstr ,k) grad(i,Jstr+1)=v_stokes(i ,Jstr+1,k)- & & v_stokes(i-1,Jstr+1,k) END DO DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN dVdt=v_stokes(i,Jstr+1,k)-v_stokes(i,Jstr+1,k) dVde=v_stokes(i,Jstr+1,k)-v_stokes(i,Jstr+2,k) IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i,Jstr+1)+grad(i+1,Jstr+1))).gt. & & 0.0_r8) THEN dVdx=grad(i ,Jstr+1) ELSE dVdx=grad(i+1,Jstr+1) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde v_stokes(i,Jstr,k)=(cff*v_stokes(i,Jstr ,k)+ & & Ce *v_stokes(i,Jstr+1,k)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr))/ & & (cff+Ce) # ifdef MASKING v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isV3Sd,ng)%clamped) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v_stokes(i,Jstr,k)=BOUNDARY(ng)%vstokes_south(i,k) # ifdef MASKING v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isV3Sd,ng)%gradient) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v_stokes(i,Jstr,k)=v_stokes(i,Jstr+1,k) # ifdef MASKING v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v_stokes(i,Jstr,k)=v_stokes(i,Jstr,k)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (LBC(isouth,isV3Sd,ng)%closed) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v_stokes(i,Jstr,k)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isV3Sd,ng)%radiation) THEN DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jend )=v_stokes(i ,Jend ,k)- & & v_stokes(i-1,Jend ,k) grad(i,Jend+1)=v_stokes(i ,Jend+1,k)- & & v_stokes(i-1,Jend+1,k) END DO DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN dVdt=v_stokes(i,Jend,k)-v_stokes(i,Jend ,k) dVde=v_stokes(i,Jend,k)-v_stokes(i,Jend-1,k) IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i,Jend)+grad(i+1,Jend))).gt.0.0_r8) THEN dVdx=grad(i ,Jend) ELSE dVdx=grad(i+1,Jend) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde v_stokes(i,Jend+1,k)=(cff*v_stokes(i,Jend+1,k)+ & & Ce *v_stokes(i,Jend ,k)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1))/ & & (cff+Ce) # ifdef MASKING v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isV3Sd,ng)%clamped) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v_stokes(i,Jend+1,k)=BOUNDARY(ng)%v_north(i,k) # ifdef MASKING v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isV3Sd,ng)%gradient) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v_stokes(i,Jend+1,k)=v_stokes(i,Jend,k) # ifdef MASKING v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v_stokes(i,Jend+1,k)=v_stokes(i,Jend+1,k)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (LBC(inorth,isV3Sd,ng)%closed) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v_stokes(i,Jend+1,k)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isV3Sd,ng)%radiation) THEN DO k=1,N(ng) DO j=JstrV-1,Jend grad(Istr-1,j)=v_stokes(Istr-1,j+1,k)- & & v_stokes(Istr-1,j ,k) grad(Istr ,j)=v_stokes(Istr ,j+1,k)- & & v_stokes(Istr ,j ,k) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN dVdt=v_stokes(Istr,j,k)-v_stokes(Istr ,j,k) dVdx=v_stokes(Istr,j,k)-v_stokes(Istr+1,j,k) IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Istr,j-1)+grad(Istr,j))).gt.0.0_r8) THEN dVde=grad(Istr,j-1) ELSE dVde=grad(Istr,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif v_stokes(Istr-1,j,k)=(cff*v_stokes(Istr-1,j,k)+ & & Cx *v_stokes(Istr ,j,k)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j-1)- & & MIN(Ce,0.0_r8)*grad(Istr-1,j ))/ & & (cff+Cx) # ifdef MASKING v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isV3Sd,ng)%clamped) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN v_stokes(Istr-1,j,k)=BOUNDARY(ng)%vstokes_west(j,k) # ifdef MASKING v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isV3Sd,ng)%gradient) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN v_stokes(Istr-1,j,k)=v_stokes(Istr,j,k) # ifdef MASKING v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(iwest,isV3Sd,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO k=1,N(ng) DO j=Jmin,Jmax IF (LBC_apply(ng)%west(j)) THEN v_stokes(Istr-1,j,k)=gamma2(ng)*v_stokes(Istr,j,k) # ifdef MASKING v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isV3Sd,ng)%radiation) THEN DO k=1,N(ng) DO j=JstrV-1,Jend grad(Iend ,j)=v_stokes(Iend ,j+1,k)- & & v_stokes(Iend ,j ,k) grad(Iend+1,j)=v_stokes(Iend+1,j+1,k)- & & v_stokes(Iend+1,j ,k) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN dVdt=v_stokes(Iend,j,k)-v_stokes(Iend ,j,k) dVdx=v_stokes(Iend,j,k)-v_stokes(Iend-1,j,k) IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Iend,j-1)+grad(Iend,j))).gt.0.0_r8) THEN dVde=grad(Iend,j-1) ELSE dVde=grad(Iend,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif v_stokes(Iend+1,j,k)=(cff*v_stokes(Iend+1,j,k)+ & & Cx *v_stokes(Iend ,j,k)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j-1)- & & MIN(Ce,0.0_r8)*grad(Iend+1,j ))/ & & (cff+Cx) # ifdef MASKING v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isV3Sd,ng)%clamped) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN v_stokes(Iend+1,j,k)=BOUNDARY(ng)%vstokes_east(j,k) # ifdef MASKING v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isV3Sd,ng)%gradient) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN v_stokes(Iend+1,j,k)=v_stokes(Iend,j,k) # ifdef MASKING v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(ieast,isV3Sd,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO k=1,N(ng) DO j=Jmin,Jmax IF (LBC_apply(ng)%east(j)) THEN v_stokes(Iend+1,j,k)=gamma2(ng)*v_stokes(Iend,j,k) # ifdef MASKING v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN DO k=1,N(ng) v_stokes(Istr-1,Jstr,k)=0.5_r8* & & (v_stokes(Istr ,Jstr ,k)+ & & v_stokes(Istr-1,Jstr+1,k)) END DO END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN DO k=1,N(ng) v_stokes(Iend+1,Jstr,k)=0.5_r8* & & (v_stokes(Iend ,Jstr ,k)+ & & v_stokes(Iend+1,Jstr+1,k)) END DO END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN DO k=1,N(ng) v_stokes(Istr-1,Jend+1,k)=0.5_r8* & & (v_stokes(Istr-1,Jend ,k)+ & & v_stokes(Istr ,Jend+1,k)) END DO END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN DO k=1,N(ng) v_stokes(Iend+1,Jend+1,k)=0.5_r8* & & (v_stokes(Iend+1,Jend ,k)+ & & v_stokes(Iend ,Jend+1,k)) END DO END IF END IF END IF RETURN END SUBROUTINE vs3dbc_tile #endif END MODULE vs3dbc_mod