#include "cppdefs.h" #if defined TL_IOMS && !defined SOLVE3D SUBROUTINE rp_main2d (RunInterval) ! !svn $Id: rp_main2d.F 927 2018-10-16 03:51:56Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2019 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine is the main driver for representers tangent linear ! ! ROMS/TOMS when configure as shallow water (barotropic ) ocean ! ! model only. It advances advances forward the representer model ! ! for all nested grids, if any, by the specified time interval ! ! (seconds), RunInterval. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # if defined MODEL_COUPLING && defined MCT_LIB USE mod_coupler # endif USE mod_iounits USE mod_scalars USE mod_stepping ! USE dateclock_mod, ONLY : time_string # if defined ATM_COUPLING_NOT_YET && defined MCT_LIB USE ocean_coupler_mod, ONLY : atmos_coupling # endif # if defined WAV_COUPLING_NOT_YET && defined MCT_LIB USE ocean_coupler_mod, ONLY : waves_coupling # endif USE strings_mod, ONLY : FoundError USE rp_diag_mod, ONLY : rp_diag # ifdef defined ADJUST_WSTRESS USE rp_frc_adjust_mod, ONLY : rp_frc_adjust # endif USE rp_ini_fields_mod, ONLY : rp_ini_fields, rp_ini_zeta # ifdef ADJUST_BOUNDARY USE rp_obc_adjust_mod, ONLY : rp_obc_adjust # endif # ifdef NEARSHORE_MELLOR_NOT_YET !! USE rp_radiation_stress_mod, ONLY : rp_radiation_stress # endif # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET !! USE rp_set_tides_mod, ONLY : rp_set_tides # endif USE rp_set_vbc_mod, ONLY : rp_set_vbc USE rp_step2d_mod, ONLY : rp_step2d # ifdef FLOATS_NOT_YET !! USE rp_step_floats_mod, ONLY : rp_step_floats # endif # ifdef WEAK_CONSTRAINT USE tl_forcing_mod, ONLY : tl_forcing # endif # ifdef RP_AVERAGES USE rp_set_avg_mod, ONLY : tl_set_avg # endif # if defined PROPAGATOR || \ (defined MASKING && (defined READ_WATER || defined WRITE_WATER)) USE wpoints_mod, ONLY : wpoints # endif ! implicit none ! ! Imported variable declarations. ! real(dp), intent(in) :: RunInterval ! ! Local variable declarations. ! integer :: ng, tile integer :: next_indx1 # ifdef FLOATS_NOT_YET integer :: Lend, Lstr, chunk_size # endif real(r8) :: MaxDT, my_StepTime ! !======================================================================= ! Time-step tangent linear vertically integrated equations. !======================================================================= ! my_StepTime=0.0_r8 MaxDT=MAXVAL(dt) STEP_LOOP : DO WHILE (my_StepTime.le.(RunInterval+0.5_r8*MaxDT)) my_StepTime=my_StepTime+MaxDT ! ! Set time clock. ! DO ng=1,Ngrids iic(ng)=iic(ng)+1 !$OMP MASTER time(ng)=time(ng)+dt(ng) tdays(ng)=time(ng)*sec2day CALL time_string (time(ng), time_code(ng)) !$OMP END MASTER END DO !$OMP BARRIER ! !----------------------------------------------------------------------- ! Read in required data, if any, from input NetCDF files. !----------------------------------------------------------------------- ! DO ng=1,Ngrids !$OMP MASTER CALL rp_get_data (ng) !$OMP END MASTER !$OMP BARRIER IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! !----------------------------------------------------------------------- ! If applicable, process input data: time interpolate between data ! snapshots. !----------------------------------------------------------------------- ! DO ng=1,Ngrids DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_set_data (ng, tile) END DO !$OMP BARRIER END DO IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef WEAK_CONSTRAINT ! !----------------------------------------------------------------------- ! If appropriate, add convolved adjoint solution impulse forcing to ! the representer model solution. Notice that the forcing is only ! needed after finishing all inner loops. The forcing is continuous. ! That is, it is time interpolated at every time-step from available ! snapshots (FrequentImpulse=TRUE). !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF (FrequentImpulse(ng)) THEN DO tile=first_tile(ng),last_tile(ng),+1 CALL tl_forcing (ng, tile, kstp(ng), nstp(ng)) END DO !$OMP BARRIER END IF END DO # endif ! !----------------------------------------------------------------------- ! If not a restart, initialize all time levels and compute other ! initial fields. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF (iic(ng).eq.ntstart(ng)) THEN ! ! Initialize free-surface. ! DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_ini_zeta (ng, tile, iRPM) END DO !$OMP BARRIER ! ! Initialize other state variables. ! DO tile=last_tile(ng),first_tile(ng),-1 CALL rp_ini_fields (ng, tile, iRPM) END DO !$OMP BARRIER END IF END DO ! !----------------------------------------------------------------------- ! Compute and report diagnostics. If appropriate, accumulate time- ! averaged output data which needs a irreversible loop in shared-memory ! jobs. !----------------------------------------------------------------------- ! DO ng=1,Ngrids DO tile=first_tile(ng),last_tile(ng),+1 ! irreversible # ifdef RP_AVERAGES CALL tl_set_avg (ng, tile) # endif # ifdef DIAGNOSTICS !! CALL rp_set_diags (ng, tile) # endif CALL rp_diag (ng, tile) END DO !$OMP BARRIER END DO # if defined ATM_COUPLING_NOT_YET && defined MCT_LIB ! !----------------------------------------------------------------------- ! Couple to atmospheric model every CoupleSteps(Iatmos) timesteps: get ! air/sea fluxes. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng)-1,CoupleSteps(Iatmos,ng)).eq.0) THEN DO tile=last_tile(ng),first_tile(ng),-1 CALL atmos_coupling (ng, tile) END DO !$OMP BARRIER END IF END DO # endif # if defined WAV_COUPLING_NOT_YET && defined MCT_LIB ! !----------------------------------------------------------------------- ! Couple to waves model every CoupleSteps(Iwaves) timesteps: get ! waves/sea fluxes. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng)-1,CoupleSteps(Iwaves,ng)).eq.0) THEN DO tile=first_tile(ng),last_tile(ng),+1 CALL waves_coupling (ng, tile) END DO !$OMP BARRIER END IF END DO # endif # ifdef NEARSHORE_MELLOR_NOT_YET ! !----------------------------------------------------------------------- ! Compute radiation stress terms. !----------------------------------------------------------------------- ! DO ng=1,Ngrids DO tile=last_tile(ng),first_tile(ng),-1 CALL rp_radiation_stress (ng, tile) END DO !$OMP BARRIER END DO # endif ! !----------------------------------------------------------------------- ! Set vertical boundary conditions. Process tidal forcing. !----------------------------------------------------------------------- ! DO ng=1,Ngrids DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_set_vbc (ng, tile) # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET CALL rp_set_tides (ng, tile) # endif END DO !$OMP BARRIER END DO # ifdef ADJUST_BOUNDARY ! !----------------------------------------------------------------------- ! Interpolate open boundary increments and adjust open boundaries. ! Skip the last output timestep. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF (iic(ng).lt.(ntend(ng)+1)) THEN DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_obc_adjust (ng, tile, Lbinp(ng)) END DO !$OMP BARRIER END IF END DO # endif # ifdef ADJUST_WSTRESS ! !----------------------------------------------------------------------- ! Interpolate surface forcing increments and adjust surface forcing. ! Skip the last output timestep. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF (iic(ng).lt.(ntend(ng)+1)) THEN DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_frc_adjust (ng, tile, Lfinp(ng)) END DO !$OMP BARRIER END IF END DO # endif ! !----------------------------------------------------------------------- ! If appropriate, write out fields into output NetCDF files. Notice ! that IO data is written in delayed and serial mode. Exit if last ! time step. !----------------------------------------------------------------------- ! DO ng=1,Ngrids !$OMP MASTER CALL rp_output (ng) !$OMP END MASTER !$OMP BARRIER IF ((FoundError(exit_flag, NoError, __LINE__, & & __FILE__)).or. & & ((iic(ng).eq.(ntend(ng)+1)).and.(ng.eq.Ngrids))) RETURN END DO ! !----------------------------------------------------------------------- ! Solve the vertically integrated primitive equations for the ! free-surface and momentum components. !----------------------------------------------------------------------- ! ! Set time indices for predictor step. The PREDICTOR_2D_STEP switch ! it is assumed to be false before the first time-step. ! DO ng=1,Ngrids iif(ng)=1 nfast(ng)=1 next_indx1=3-indx1(ng) IF (.not.PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.TRUE. IF (FIRST_2D_STEP) THEN kstp(ng)=indx1(ng) ELSE kstp(ng)=3-indx1(ng) END IF knew(ng)=3 krhs(ng)=indx1(ng) END IF ! ! Predictor step - Advance barotropic equations using 2D time-step ! ============== predictor scheme. ! DO tile=last_tile(ng),first_tile(ng),-1 CALL rp_step2d (ng, tile) END DO !$OMP BARRIER END DO ! ! Set time indices for corrector step. ! DO ng=1,Ngrids IF (PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.FALSE. knew(ng)=next_indx1 kstp(ng)=3-knew(ng) krhs(ng)=3 IF (iif(ng).lt.(nfast(ng)+1)) indx1(ng)=next_indx1 END IF ! ! Corrector step - Apply 2D time-step corrector scheme. Notice that ! ============== there is not need for a corrector step during the ! auxiliary (nfast+1) time-step. ! IF (iif(ng).lt.(nfast(ng)+1)) THEN DO tile=first_tile(ng),last_tile(ng),+1 CALL rp_step2d (ng, tile) END DO !$OMP BARRIER END IF END DO # ifdef FLOATS_NOT_YET ! !----------------------------------------------------------------------- ! Compute Lagrangian drifters trajectories: Split all the drifters ! between all the computational threads, except in distributed-memory ! and serial configurations. In distributed-memory, the parallel node ! containing the drifter is selected internally since the state ! variables do not have a global scope. !----------------------------------------------------------------------- ! DO ng=1,Ngrids IF (Lfloats(Ng)) THEN # ifdef _OPENMP chunk_size=(Nfloats(ng)+numthreads-1)/numthreads Lstr=1+Mythread*chunk_size Lend=MIN(Nfloats(ng),Lstr+chunk_size-1) # else Lstr=1 Lend=Nfloats(ng) # endif CALL rp_step_floats (ng, Lstr, Lend) !$OMP BARRIER ! ! Shift floats time indices. ! nfp1(ng)=MOD(nfp1(ng)+1,NFT+1) nf (ng)=MOD(nf (ng)+1,NFT+1) nfm1(ng)=MOD(nfm1(ng)+1,NFT+1) nfm2(ng)=MOD(nfm2(ng)+1,NFT+1) nfm3(ng)=MOD(nfm3(ng)+1,NFT+1) END IF END DO # endif END DO STEP_LOOP RETURN END SUBROUTINE rp_main2d #else SUBROUTINE rp_main2d RETURN END SUBROUTINE rp_main2d #endif