#undef DEBUG #ifdef TL_IOMS SUBROUTINE rp_step2d (ng, tile) ! !svn $Id: rp_step2d_LF_AM3.h 889 2018-02-10 03:32:52Z arango $ !======================================================================= ! ! ! Representer model shallow-water primitive equations predictor ! ! (Leap-frog) and corrector (Adams-Moulton) time-stepping engine. ! ! ! !======================================================================= ! USE mod_param # ifdef SOLVE3D USE mod_coupling # endif # ifdef DIAGNOSTICS_UV !! USE mod_diags # endif USE mod_forces USE mod_grid # if defined UV_VIS2 || defined UV_VIS4 || defined NEARSHORE_MELLOR USE mod_mixing # endif USE mod_ocean # if defined SEDIMENT && defined SED_MORPH && defined SOLVE3D USE mod_sedbed # endif USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, iRPM, 9, __LINE__, __FILE__) # endif CALL rp_step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), knew(ng), & # ifdef SOLVE3D & nstp(ng), nnew(ng), & # endif # ifdef MASKING & GRID(ng) % pmask, GRID(ng) % rmask, & & GRID(ng) % umask, GRID(ng) % vmask, & # endif # ifdef WET_DRY_NOT_YET & GRID(ng) % pmask_wet, GRID(ng) % pmask_full, & & GRID(ng) % rmask_wet, GRID(ng) % rmask_full, & & GRID(ng) % umask_wet, GRID(ng) % umask_full, & & GRID(ng) % vmask_wet, GRID(ng) % vmask_full, & # ifdef SOLVE3D & GRID(ng) % rmask_wet_avg, & # endif # endif & GRID(ng) % fomn, & & GRID(ng) % h, GRID(ng) % tl_h, & & GRID(ng) % om_u, GRID(ng) % om_v, & & GRID(ng) % on_u, GRID(ng) % on_v, & & GRID(ng) % omn, & & GRID(ng) % pm, GRID(ng) % pn, & # if defined CURVGRID && defined UV_ADV & GRID(ng) % dndx, GRID(ng) % dmde, & # endif # if defined UV_VIS2 || defined UV_VIS4 || defined RPM_RELAXATION & GRID(ng) % pmon_r, GRID(ng) % pnom_r, & & GRID(ng) % pmon_p, GRID(ng) % pnom_p, & & GRID(ng) % om_r, GRID(ng) % on_r, & & GRID(ng) % om_p, GRID(ng) % on_p, & # ifdef UV_VIS2 & MIXING(ng) % visc2_p, MIXING(ng) % visc2_r,& # endif # ifdef UV_VIS4 & MIXING(ng) % visc4_p, MIXING(ng) % visc4_r,& # endif # endif # ifdef NEARSHORE_MELLOR & MIXING(ng) % tl_rustr2d, & & MIXING(ng) % tl_rvstr2d, & & OCEAN(ng) % tl_rulag2d, & & OCEAN(ng) % tl_rvlag2d, & & OCEAN(ng) % ubar_stokes, & & OCEAN(ng) % tl_ubar_stokes, & & OCEAN(ng) % vbar_stokes, & & OCEAN(ng) % tl_vbar_stokes, & # endif # ifndef SOLVE3D & FORCES(ng) % sustr, & & FORCES(ng) % svstr, & & FORCES(ng) % bustr, & & FORCES(ng) % bvstr, & # ifdef TL_IOMS & FORCES(ng) % tl_sustr, & & FORCES(ng) % tl_svstr, & & FORCES(ng) % tl_bustr, & & FORCES(ng) % tl_bvstr, & # endif # ifdef ATM_PRESS & FORCES(ng) % Pair, & # endif # else # ifdef VAR_RHO_2D & COUPLING(ng) % rhoA, & & COUPLING(ng) % tl_rhoA, & & COUPLING(ng) % rhoS, & & COUPLING(ng) % tl_rhoS, & # endif & COUPLING(ng) % tl_DU_avg1, & & COUPLING(ng) % tl_DU_avg2, & & COUPLING(ng) % tl_DV_avg1, & & COUPLING(ng) % tl_DV_avg2, & & COUPLING(ng) % Zt_avg1, & & COUPLING(ng) % tl_Zt_avg1, & & COUPLING(ng) % tl_rufrc, & & COUPLING(ng) % tl_rvfrc, & & OCEAN(ng) % tl_ru, & & OCEAN(ng) % tl_rv, & # endif # ifdef DIAGNOSTICS_UV !! & DIAGS(ng) % DiaU2wrk, DIAGS(ng) % DiaV2wrk,& !! & DIAGS(ng) % DiaRUbar, DIAGS(ng) % DiaRVbar,& # ifdef SOLVE3D !! & DIAGS(ng) % DiaU2int, DIAGS(ng) % DiaV2int,& !! & DIAGS(ng) % DiaRUfrc, DIAGS(ng) % DiaRVfrc,& # endif # endif & OCEAN(ng) % rubar, OCEAN(ng) % tl_rubar,& & OCEAN(ng) % rvbar, OCEAN(ng) % tl_rvbar,& & OCEAN(ng) % rzeta, OCEAN(ng) % tl_rzeta,& & OCEAN(ng) % ubar, OCEAN(ng) % tl_ubar, & & OCEAN(ng) % vbar, OCEAN(ng) % tl_vbar, & & OCEAN(ng) % zeta, OCEAN(ng) % tl_zeta) # ifdef PROFILE CALL wclock_off (ng, iRPM, 9, __LINE__, __FILE__) # endif RETURN END SUBROUTINE rp_step2d ! !*********************************************************************** SUBROUTINE rp_step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & # ifdef SOLVE3D & nstp, nnew, & # endif # ifdef MASKING & pmask, rmask, umask, vmask, & # endif # ifdef WET_DRY_NOT_YET & pmask_wet, pmask_full, & & rmask_wet, rmask_full, & & umask_wet, umask_full, & & vmask_wet, vmask_full, & # ifdef SOLVE3D & rmask_wet_avg, & # endif # endif & fomn, & & h, tl_h, & & om_u, om_v, on_u, on_v, omn, pm, pn, & # if defined CURVGRID && defined UV_ADV & dndx, dmde, & # endif # if defined UV_VIS2 || defined UV_VIS4 || defined RPM_RELAXATION & pmon_r, pnom_r, pmon_p, pnom_p, & & om_r, on_r, om_p, on_p, & # ifdef UV_VIS2 & visc2_p, visc2_r, & # endif # ifdef UV_VIS4 & visc4_p, visc4_r, & # endif # endif # ifdef NEARSHORE_MELLOR & tl_rustr2d, tl_rvstr2d, & & tl_rulag2d, tl_rvlag2d, & & ubar_stokes, tl_ubar_stokes, & & vbar_stokes, tl_vbar_stokes, & # endif # ifndef SOLVE3D & sustr, svstr, & & bustr, bvstr, & # ifdef TL_IOMS & tl_sustr, tl_svstr, & & tl_bustr, tl_bvstr, & # endif # ifdef ATM_PRESS & Pair, & # endif # else # ifdef VAR_RHO_2D & rhoA, tl_rhoA, rhoS, tl_rhoS, & # endif & tl_DU_avg1, tl_DU_avg2, & & tl_DV_avg1, tl_DV_avg2, & & Zt_avg1, tl_Zt_avg1, & & tl_rufrc, tl_rvfrc, & & tl_ru, tl_rv, & # endif # ifdef DIAGNOSTICS_UV !! & DiaU2wrk, DiaV2wrk, & !! & DiaRUbar, DiaRVbar, & # ifdef SOLVE3D !! & DiaU2int, DiaV2int, & !! & DiaRUfrc, DiaRVfrc, & # endif # endif & rubar, tl_rubar, & & rvbar, tl_rvbar, & & rzeta, tl_rzeta, & & ubar, tl_ubar, & & vbar, tl_vbar, & & zeta, tl_zeta) !*********************************************************************** ! USE mod_param USE mod_clima USE mod_ncparam USE mod_scalars # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET USE mod_sediment # endif USE mod_sources ! USE exchange_2d_mod # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange2d # endif USE obc_volcons_mod USE rp_obc_volcons_mod USE rp_u2dbc_mod, ONLY : rp_u2dbc_tile USE rp_v2dbc_mod, ONLY : rp_v2dbc_tile USE rp_zetabc_mod, ONLY : rp_zetabc_tile # ifdef WET_DRY_NOT_YET !> USE wetdry_mod, ONLY : wetdry_tile # endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, knew # ifdef SOLVE3D integer, intent(in) :: nstp, nnew # endif ! # ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: pmask(LBi:,LBj:) real(r8), intent(in) :: rmask(LBi:,LBj:) real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif real(r8), intent(in) :: fomn(LBi:,LBj:) real(r8), intent(in) :: h(LBi:,LBj:) real(r8), intent(in) :: om_u(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: on_v(LBi:,LBj:) real(r8), intent(in) :: omn(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) # if defined CURVGRID && defined UV_ADV real(r8), intent(in) :: dndx(LBi:,LBj:) real(r8), intent(in) :: dmde(LBi:,LBj:) # endif # if defined UV_VIS2 || defined UV_VIS4 || defined RPM_RELAXATION real(r8), intent(in) :: pmon_r(LBi:,LBj:) real(r8), intent(in) :: pnom_r(LBi:,LBj:) real(r8), intent(in) :: pmon_p(LBi:,LBj:) real(r8), intent(in) :: pnom_p(LBi:,LBj:) real(r8), intent(in) :: om_r(LBi:,LBj:) real(r8), intent(in) :: on_r(LBi:,LBj:) real(r8), intent(in) :: om_p(LBi:,LBj:) real(r8), intent(in) :: on_p(LBi:,LBj:) # ifdef UV_VIS2 real(r8), intent(in) :: visc2_p(LBi:,LBj:) real(r8), intent(in) :: visc2_r(LBi:,LBj:) # endif # ifdef UV_VIS4 real(r8), intent(in) :: visc4_p(LBi:,LBj:) real(r8), intent(in) :: visc4_r(LBi:,LBj:) # endif # endif # ifdef NEARSHORE_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:,LBj:) real(r8), intent(in) :: vbar_stokes(LBi:,LBj:) # endif real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) real(r8), intent(in) :: tl_h(LBi:,LBj:) # ifndef SOLVE3D real(r8), intent(in) :: sustr(LBi:,LBj:) real(r8), intent(in) :: svstr(LBi:,LBj:) real(r8), intent(in) :: bustr(LBi:,LBj:) real(r8), intent(in) :: bvstr(LBi:,LBj:) # ifdef TL_IOMS real(r8), intent(in) :: tl_sustr(LBi:,LBj:) real(r8), intent(in) :: tl_svstr(LBi:,LBj:) real(r8), intent(in) :: tl_bustr(LBi:,LBj:) real(r8), intent(in) :: tl_bvstr(LBi:,LBj:) # endif # ifdef ATM_PRESS real(r8), intent(in) :: Pair(LBi:,LBj:) # endif # else # ifdef VAR_RHO_2D real(r8), intent(in) :: rhoA(LBi:,LBj:) real(r8), intent(in) :: rhoS(LBi:,LBj:) real(r8), intent(in) :: tl_rhoA(LBi:,LBj:) real(r8), intent(in) :: tl_rhoS(LBi:,LBj:) # endif real(r8), intent(in) :: Zt_avg1(LBi:,LBj:) real(r8), intent(inout) :: tl_DU_avg1(LBi:,LBj:) real(r8), intent(inout) :: tl_DU_avg2(LBi:,LBj:) real(r8), intent(inout) :: tl_DV_avg1(LBi:,LBj:) real(r8), intent(inout) :: tl_DV_avg2(LBi:,LBj:) real(r8), intent(inout) :: tl_Zt_avg1(LBi:,LBj:) real(r8), intent(inout) :: tl_rufrc(LBi:,LBj:) real(r8), intent(inout) :: tl_rvfrc(LBi:,LBj:) real(r8), intent(inout) :: tl_ru(LBi:,LBj:,0:,:) real(r8), intent(inout) :: tl_rv(LBi:,LBj:,0:,:) # endif # ifdef NEARSHORE_MELLOR real(r8), intent(inout) :: tl_rustr2d(LBi:,LBj:) real(r8), intent(inout) :: tl_rvstr2d(LBi:,LBj:) real(r8), intent(inout) :: tl_rulag2d(LBi:,LBj:) real(r8), intent(inout) :: tl_rvlag2d(LBi:,LBj:) real(r8), intent(inout) :: tl_ubar_stokes(LBi:,LBj:) real(r8), intent(inout) :: tl_vbar_stokes(LBi:,LBj:) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(inout) :: pmask_full(LBi:,LBj:) real(r8), intent(inout) :: rmask_full(LBi:,LBj:) real(r8), intent(inout) :: umask_full(LBi:,LBj:) real(r8), intent(inout) :: vmask_full(LBi:,LBj:) real(r8), intent(inout) :: pmask_wet(LBi:,LBj:) real(r8), intent(inout) :: rmask_wet(LBi:,LBj:) real(r8), intent(inout) :: umask_wet(LBi:,LBj:) real(r8), intent(inout) :: vmask_wet(LBi:,LBj:) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:,LBj:) # endif # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaU2wrk(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaV2wrk(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaRUbar(LBi:,LBj:,:,:) !! real(r8), intent(inout) :: DiaRVbar(LBi:,LBj:,:,:) # ifdef SOLVE3D !! real(r8), intent(inout) :: DiaU2int(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaV2int(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaRUfrc(LBi:,LBj:,:,:) !! real(r8), intent(inout) :: DiaRVfrc(LBi:,LBj:,:,:) # endif # endif real(r8), intent(inout) :: rubar(LBi:,LBj:,:) real(r8), intent(inout) :: rvbar(LBi:,LBj:,:) real(r8), intent(inout) :: rzeta(LBi:,LBj:,:) real(r8), intent(inout) :: tl_rubar(LBi:,LBj:,:) real(r8), intent(inout) :: tl_rvbar(LBi:,LBj:,:) real(r8), intent(inout) :: tl_rzeta(LBi:,LBj:,:) real(r8), intent(inout) :: tl_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: tl_vbar(LBi:,LBj:,:) real(r8), intent(inout) :: tl_zeta(LBi:,LBj:,:) # else # ifdef MASKING real(r8), intent(in) :: pmask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: fomn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: h(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: omn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) # if defined CURVGRID && defined UV_ADV real(r8), intent(in) :: dndx(LBi:UBi,LBj:UBj) real(r8), intent(in) :: dmde(LBi:UBi,LBj:UBj) # endif # if defined UV_VIS2 || defined UV_VIS4 || defined RPM_RELAXATION real(r8), intent(in) :: pmon_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pmon_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_p(LBi:UBi,LBj:UBj) # ifdef UV_VIS2 real(r8), intent(in) :: visc2_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: visc2_r(LBi:UBi,LBj:UBj) # endif # ifdef UV_VIS4 real(r8), intent(in) :: visc4_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: visc4_r(LBi:UBi,LBj:UBj) # endif # endif # ifdef NEARSHORE_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vbar_stokes(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: ubar(LBi:UBi,LBj:UBj,3) real(r8), intent(in) :: vbar(LBi:UBi,LBj:UBj,3) real(r8), intent(in) :: zeta(LBi:UBi,LBj:UBj,3) real(r8), intent(in) :: tl_h(LBi:UBi,LBj:UBj) # ifndef SOLVE3D real(r8), intent(in) :: sustr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: svstr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: bustr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: bvstr(LBi:UBi,LBj:UBj) # ifdef TL_IOMS real(r8), intent(in) :: tl_sustr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_svstr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_bustr(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_bvstr(LBi:UBi,LBj:UBj) # endif # ifdef ATM_PRESS real(r8), intent(in) :: Pair(LBi:UBi,LBj:UBj) # endif # else # ifdef VAR_RHO_2D real(r8), intent(in) :: rhoA(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rhoS(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_rhoA(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_rhoS(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: Zt_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_DU_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_DV_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_Zt_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_rufrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_rvfrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_ru(LBi:UBi,LBj:UBj,0:UBk,2) real(r8), intent(inout) :: tl_rv(LBi:UBi,LBj:UBj,0:UBk,2) # endif # ifdef NEARSHORE_MELLOR real(r8), intent(inout) :: tl_rustr2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_rvstr2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_rulag2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_rvlag2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: tl_vbar_stokes(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(inout) :: pmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: pmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_wet(LBi:UBi,LBj:UBj) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:UBi,LBj:UBj) # endif # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaU2wrk(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaV2wrk(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaRUbar(LBi:UBi,LBj:UBj,2,NDM2d-1) !! real(r8), intent(inout) :: DiaRVbar(LBi:UBi,LBj:UBj,2,NDM2d-1) # ifdef SOLVE3D !! real(r8), intent(inout) :: DiaU2int(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaV2int(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaRUfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) !! real(r8), intent(inout) :: DiaRVfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) # endif # endif real(r8), intent(inout) :: rubar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: rvbar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: rzeta(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: tl_rubar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: tl_rvbar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: tl_rzeta(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: tl_ubar(LBi:UBi,LBj:UBj,3) real(r8), intent(inout) :: tl_vbar(LBi:UBi,LBj:UBj,3) real(r8), intent(inout) :: tl_zeta(LBi:UBi,LBj:UBj,3) # endif ! ! Local variable declarations. ! logical :: CORRECTOR_2D_STEP integer :: i, is, j, ptsk # ifdef DIAGNOSTICS_UV !! integer :: idiag # endif real(r8) :: cff, cff1, cff2, cff3, cff4, cff5, cff6, cff7 real(r8) :: fac, fac1, fac2, fac3 real(r8) :: tl_cff, tl_cff1, tl_cff2, tl_cff3, tl_cff4 real(r8) :: tl_fac, tl_fac1 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dgrad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dnew real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs_p real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dstp real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVom # ifdef NEARSHORE_MELLOR real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUSon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVSom # endif # ifdef UV_VIS4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapU real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapV # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta2 # if defined VAR_RHO_2D && defined SOLVE3D real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzetaSA # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_ubar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_vbar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_zeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zeta_new real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zwrk # ifdef WET_DRY_NOT_YET !> real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: wetdry # endif # ifdef DIAGNOSTICS_UV !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Uwrk !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Vwrk !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS,NDM2d-1) :: DiaU2rhs !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS,NDM2d-1) :: DiaV2rhs # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_Dgrad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_Dnew real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_Drhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_Drhs_p real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_Dstp real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_DUon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_DVom # ifdef NEARSHORE_MELLOR real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_DUSon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_DVSom # endif # ifdef UV_VIS4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_LapU real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_LapV # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_UFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_UFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_VFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_VFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_gzeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_gzeta2 # if defined VAR_RHO_2D && defined SOLVE3D real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_gzetaSA # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_rhs_ubar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_rhs_vbar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_rhs_zeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_zeta_new real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_zwrk # ifdef WET_DRY_NOT_YET !> real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_wetdry # endif # include "set_bounds.h" ! ptsk=3-kstp CORRECTOR_2D_STEP=.not.PREDICTOR_2D_STEP(ng) # ifdef DEBUG IF (Master) THEN WRITE (20,20) iic(ng), PREDICTOR_2D_STEP(ng), & & kstp, krhs, knew, ptsk 20 FORMAT (' iic = ',i5.5,' predictor = ',l1,' kstp = ',i1, & & ' krhs = ',i1,' knew = ',i1,' ptsk = ',i1) END IF # endif ! !----------------------------------------------------------------------- ! Compute total depth (m) and vertically integrated mass fluxes. !----------------------------------------------------------------------- ! # if defined DISTRIBUTE && !defined NESTING ! In distributed-memory, the I- and J-ranges are different and a ! special exchange is done to avoid having three ghost points for ! high order numerical stencils. Notice that a private array is ! passed below to the exchange routine. It also applies periodic ! boundary conditions, if appropriate and no partitions in I- or ! J-directions. ! DO j=JstrV-2,Jendp2 DO i=IstrU-2,Iendp2 Dnew(i,j)=zeta(i,j,knew)+h(i,j) Drhs(i,j)=zeta(i,j,krhs)+h(i,j) tl_Drhs(i,j)=tl_zeta(i,j,krhs)+tl_h(i,j) END DO END DO DO j=JstrV-2,Jendp2 DO i=IstrU-1,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 tl_DUon(i,j)=tl_ubar(i,j,krhs)*cff1+ & & ubar(i,j,krhs)*tl_cff1- & # ifdef TL_IOMS & DUon(i,j) # endif # ifdef NEARSHORE_MELLOR DUSon(i,j)=ubar_stokes(i,j)*cff1 tl_DUSon(i,j)=tl_ubar_stokes(i,j)*cff1+ & & ubar_stokes(i,j)*tl_cff1- & # ifdef TL_IOMS & DUSon(i,j) # endif DUon(i,j)=DUon(i,j)+DUSon(i,j) tl_DUon(i,j)=tl_DUon(i,j)+tl_DUSon(i,j) # endif END DO END DO DO j=JstrV-1,Jendp2 DO i=IstrU-2,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 tl_DVom(i,j)=tl_vbar(i,j,krhs)*cff1+ & & vbar(i,j,krhs)*tl_cff1- & # ifdef TL_IOMS & DVom(i,j) # endif # ifdef NEARSHORE_MELLOR DVSom(i,j)=vbar_stokes(i,j)*cff1 tl_DVSom(i,j)=tl_vbar_stokes(i,j)*cff1+ & & vbar_stokes(i,j)*tl_cff1- & # ifdef TL_IOMS & DVSom(i,j) # endif DVom(i,j)=DVom(i,j)+DVSom(i,j) tl_DVom(i,j)=tl_DVom(i,j)+tl_DVSom(i,j) # endif END DO END DO # else DO j=JstrVm2-1,Jendp2 DO i=IstrUm2-1,Iendp2 Dnew(i,j)=zeta(i,j,knew)+h(i,j) Drhs(i,j)=zeta(i,j,krhs)+h(i,j) tl_Drhs(i,j)=tl_zeta(i,j,krhs)+tl_h(i,j) END DO END DO DO j=JstrVm2-1,Jendp2 DO i=IstrUm2,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 tl_DUon(i,j)=tl_ubar(i,j,krhs)*cff1+ & & ubar(i,j,krhs)*tl_cff1- & # ifdef TL_IOMS & DUon(i,j) # endif # ifdef NEARSHORE_MELLOR DUSon(i,j)=ubar_stokes(i,j)*cff1 tl_DUSon(i,j)=tl_ubar_stokes(i,j)*cff1+ & & ubar_stokes(i,j)*tl_cff1- & # ifdef TL_IOMS & DUSon(i,j) # endif DUon(i,j)=DUon(i,j)+DUSon(i,j) tl_DUon(i,j)=tl_DUon(i,j)+tl_DUSon(i,j) # endif END DO END DO DO j=JstrVm2,Jendp2 DO i=IstrUm2-1,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 tl_DVom(i,j)=tl_vbar(i,j,krhs)*cff1+ & & vbar(i,j,krhs)*tl_cff1- & # ifdef TL_IOMS & DVom(i,j) # endif # ifdef NEARSHORE_MELLOR DVSom(i,j)=vbar_stokes(i,j)*cff1 tl_DVSom(i,j)=tl_vbar_stokes(i,j)*cff1+ & & vbar_stokes(i,j)*tl_cff1- & # ifdef TL_IOMS & DVSom(i,j) # endif DVom(i,j)=DVom(i,j)+DVSom(i,j) tl_DVom(i,j)=tl_DVom(i,j)+tl_DVSom(i,j) # endif END DO END DO # endif # ifdef DISTRIBUTE ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_u2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DUon) CALL exchange_u2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & tl_DUon) CALL exchange_v2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DVom) CALL exchange_v2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & tl_DVom) END IF CALL mp_exchange2d (ng, tile, iRPM, 2, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & DUon, DVom) CALL mp_exchange2d (ng, tile, iRPM, 2, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_DUon, tl_DVom) # endif # if defined TL_IOMS ! ! Initialize right-hand-side terms. ! DO j=Jstr,Jend DO i=Istr,Iend rhs_ubar(i,j)=0.0_r8 rhs_vbar(i,j)=0.0_r8 rubar(i,j,1)=0.0_r8 rubar(i,j,2)=0.0_r8 rvbar(i,j,1)=0.0_r8 rvbar(i,j,2)=0.0_r8 END DO END DO # endif ! ! Compute integral mass flux across open boundaries and adjust ! for volume conservation. Compute BASIC STATE value. ! This needs to be computed here instead of below. ! IF (ANY(tl_VolCons(:,ng))) THEN CALL obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & knew, & # ifdef MASKING & umask, vmask, & # endif & h, om_v, on_u, & & ubar, vbar, zeta) ! ! Set vertically integrated mass fluxes DUon and DVom along the open ! boundaries in such a way that the integral volume is conserved. ! CALL set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, & # ifdef MASKING & umask, vmask, & # endif & om_v, on_u, & & ubar, vbar, & & Drhs, DUon, DVom) CALL rp_set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, & # ifdef MASKING & umask, vmask, & # endif & om_v, on_u, ubar, vbar, & & tl_ubar, tl_vbar, & & Drhs, DUon, DVom, & & tl_Drhs, tl_DUon, tl_DVom) END IF # ifdef SOLVE3D ! !----------------------------------------------------------------------- ! Compute time averaged fields over all short time-steps. !----------------------------------------------------------------------- ! IF (PREDICTOR_2D_STEP(ng)) THEN IF (FIRST_2D_STEP) THEN ! ! Reset arrays for 2D fields averaged within the short time-steps. ! cff2=(-1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR !> Zt_avg1(i,j)=0.0_r8 !> tl_Zt_avg1(i,j)=0.0_r8 END DO DO i=Istr,IendR !> DU_avg1(i,j)=0.0_r8 !> tl_DU_avg1(i,j)=0.0_r8 !> DU_avg2(i,j)=cff2*DUon(i,j) !> tl_DU_avg2(i,j)=cff2*tl_DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !> DV_avg1(i,j)=0.0_r8 !> tl_DV_avg1(i,j)=0.0_r8 !> DV_avg2(i,j)=cff2*DVom(i,j) !> tl_DV_avg2(i,j)=cff2*tl_DVom(i,j) END DO END DO ELSE ! ! Accumulate field averages of previous time-step after they are ! computed in the previous corrector step, updated their boundaries, ! and synchronized. ! cff1=weight(1,iif(ng)-1,ng) cff2=(8.0_r8/12.0_r8)*weight(2,iif(ng) ,ng)- & & (1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR !> Zt_avg1(i,j)=Zt_avg1(i,j)+cff1*zeta(i,j,krhs) !> tl_Zt_avg1(i,j)=tl_Zt_avg1(i,j)+cff1*tl_zeta(i,j,krhs) END DO DO i=Istr,IendR !> DU_avg1(i,j)=DU_avg1(i,j)+cff1*DUon(i,j) !> tl_DU_avg1(i,j)=tl_DU_avg1(i,j)+cff1*tl_DUon(i,j) # ifdef NEARSHORE_MELLOR !> DU_avg1(i,j)=DU_avg1(i,j)-cff1*DUSon(i,j) !> tl_DU_avg1(i,j)=tl_DU_avg1(i,j)-cff1*tl_DUSon(i,j) # endif !> DU_avg2(i,j)=DU_avg2(i,j)+cff2*DUon(i,j) !> tl_DU_avg2(i,j)=tl_DU_avg2(i,j)+cff2*tl_DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !> DV_avg1(i,j)=DV_avg1(i,j)+cff1*DVom(i,j) !> tl_DV_avg1(i,j)=tl_DV_avg1(i,j)+cff1*tl_DVom(i,j) # ifdef NEARSHORE_MELLOR !> DV_avg1(i,j)=DV_avg1(i,j)-cff1*DVSom(i,j) !> tl_DV_avg1(i,j)=tl_DV_avg1(i,j)-cff1*tl_DVSom(i,j) # endif !> DV_avg2(i,j)=DV_avg2(i,j)+cff2*DVom(i,j) !> tl_DV_avg2(i,j)=tl_DV_avg2(i,j)+cff2*tl_DVom(i,j) END DO END DO END IF ELSE IF (FIRST_2D_STEP) THEN cff2=weight(2,iif(ng),ng) ELSE cff2=(5.0_r8/12.0_r8)*weight(2,iif(ng),ng) END IF DO j=JstrR,JendR DO i=Istr,IendR !> DU_avg2(i,j)=DU_avg2(i,j)+cff2*DUon(i,j) !> tl_DU_avg2(i,j)=tl_DU_avg2(i,j)+cff2*tl_DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !> DV_avg2(i,j)=DV_avg2(i,j)+cff2*DVom(i,j) !> tl_DV_avg2(i,j)=tl_DV_avg2(i,j)+cff2*tl_DVom(i,j) END DO END DO END IF ! ! After all fast time steps are completed, apply boundary conditions ! to time averaged fields. # ifdef NESTING ! In nesting applications with refinement grids, we need to exchange ! the DU_avg2 and DV_avg2 fluxes boundary information for the case ! that a contact point is at a tile partition. Notice that in such ! cases, we need i+1 and j+1 values for spatial/temporal interpolation. # endif ! IF ((iif(ng).eq.(nfast(ng)+1)).and.PREDICTOR_2D_STEP(ng)) THEN IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !> CALL exchange_r2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & Zt_avg1) !> CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_Zt_avg1) !> CALL exchange_u2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & DU_avg1) !> CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_DU_avg1) !> CALL exchange_v2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & DV_avg1) !> CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_DV_avg1) # ifdef NESTING !> CALL exchange_u2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & DU_avg2) !> CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_DU_avg2) !> CALL exchange_v2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & DV_avg2) !> CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_DV_avg2) # endif END IF # ifdef DISTRIBUTE !> CALL mp_exchange2d (ng, tile, iNLM, 3, & !> & LBi, UBi, LBj, UBj, & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & Zt_avg1, DU_avg1, DV_avg1) !> CALL mp_exchange2d (ng, tile, iRPM, 3, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_Zt_avg1, tl_DU_avg1, tl_DV_avg1) # ifdef NESTING !> CALL mp_exchange2d (ng, tile, iNLM, 2, & !> & LBi, UBi, LBj, UBj, & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & DU_avg2, DV_avg2) !> CALL mp_exchange2d (ng, tile, iRPM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_DU_avg2, tl_DV_avg2) # endif # endif END IF # endif # ifdef WET_DRY_NOT_YET ! !----------------------------------------------------------------------- ! Compute new wet/dry masks. !----------------------------------------------------------------------- ! !> CALL wetdry_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & IminS, ImaxS, JminS, JmaxS, & # ifdef MASKING !> & pmask, rmask, umask, vmask, & # endif !> & h, zeta(:,:,kstp), & # ifdef SOLVE3D !> & DU_avg1, DV_avg1, & !> & rmask_wet_avg, & # endif !> & pmask_wet, pmask_full, & !> & rmask_wet, rmask_full, & !> & umask_wet, umask_full, & !> & vmask_wet, vmask_full) !> !> HGA: Need the RPM code here. !> # endif ! ! Do not perform the actual time stepping during the auxiliary ! (nfast(ng)+1) time step. ! IF (iif(ng).gt.nfast(ng)) RETURN ! !======================================================================= ! Time step free-surface equation. !======================================================================= ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. ! # if defined VAR_RHO_2D && defined SOLVE3D fac=1000.0_r8/rho0 # endif IF (FIRST_2D_STEP) THEN cff1=dtfast(ng) DO j=JstrV-1,Jend DO i=IstrU-1,Iend rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1)) # ifdef TL_IOMS ! ! Fill the basic state rzeta arrays. No need to fill the tl_rzeta ! arrays at this point. ! rzeta(i,j,kstp)=rhs_zeta(i,j) rzeta(i,j,ptsk)=rhs_zeta(i,j) # endif tl_rhs_zeta(i,j)=(tl_DUon(i,j)-tl_DUon(i+1,j))+ & & (tl_DVom(i,j)-tl_DVom(i,j+1)) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*tl_rhs_zeta(i,j) # ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) # endif !> Dnew(i,j)=zeta_new(i,j)+h(i,j) !> tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) ! zwrk(i,j)=0.5_r8*(zeta(i,j,kstp)+zeta_new(i,j)) tl_zwrk(i,j)=0.5_r8*(tl_zeta(i,j,kstp)+tl_zeta_new(i,j)) # if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & & tl_rhoS(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & rhoS(i,j)*zwrk(i,j) # endif gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & & gzeta(i,j)*tl_zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j))- & # ifdef TL_IOMS & gzetaSA(i,j) # endif # else gzeta(i,j)=zwrk(i,j) tl_gzeta(i,j)=tl_zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif # endif END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=2.0_r8*dtfast(ng) cff4=4.0_r8/25.0_r8 cff5=1.0_r8-2.0_r8*cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1)) # ifdef TL_IOMS ! ! Fill the basic state rzeta arrays. No need to fill the tl_rzeta ! arrays at this point. ! rzeta(i,j,kstp)=rhs_zeta(i,j) rzeta(i,j,ptsk)=rhs_zeta(i,j) # endif tl_rhs_zeta(i,j)=(tl_DUon(i,j)-tl_DUon(i+1,j))+ & & (tl_DVom(i,j)-tl_DVom(i,j+1)) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*tl_rhs_zeta(i,j) # ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) # endif !> Dnew(i,j)=zeta_new(i,j)+h(i,j) !> tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) ! zwrk(i,j)=cff5*zeta(i,j,krhs)+ & & cff4*(zeta(i,j,kstp)+zeta_new(i,j)) tl_zwrk(i,j)=cff5*tl_zeta(i,j,krhs)+ & & cff4*(tl_zeta(i,j,kstp)+tl_zeta_new(i,j)) # if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & & tl_rhoS(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & rhoS(i,j)*zwrk(i,j) # endif gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & & gzeta(i,j)*tl_zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j))- & # ifdef TL_IOMS & gzetaSA(i,j) # endif # else gzeta(i,j)=zwrk(i,j) tl_gzeta(i,j)=tl_zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif # endif END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=dtfast(ng)*5.0_r8/12.0_r8 cff2=dtfast(ng)*8.0_r8/12.0_r8 cff3=dtfast(ng)*1.0_r8/12.0_r8 cff4=2.0_r8/5.0_r8 cff5=1.0_r8-cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=cff1*((DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1))) tl_cff=cff1*((tl_DUon(i,j)-tl_DUon(i+1,j))+ & & (tl_DVom(i,j)-tl_DVom(i,j+1))) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*(cff+ & & cff2*rzeta(i,j,kstp)- & & cff3*rzeta(i,j,ptsk)) tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*(tl_cff+ & & cff2*tl_rzeta(i,j,kstp)- & & cff3*tl_rzeta(i,j,ptsk)) # ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) # endif !> Dnew(i,j)=zeta_new(i,j)+h(i,j) !> tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) ! zwrk(i,j)=cff5*zeta_new(i,j)+cff4*zeta(i,j,krhs) tl_zwrk(i,j)=cff5*tl_zeta_new(i,j)+cff4*tl_zeta(i,j,krhs) # if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & & tl_rhoS(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & rhoS(i,j)*zwrk(i,j) # endif gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & & gzeta(i,j)*tl_zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j))- & # ifdef TL_IOMS & gzetaSA(i,j) # endif # else gzeta(i,j)=zwrk(i,j) tl_gzeta(i,j)=tl_zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j)- & # ifdef TL_IOMS & gzeta2(i,j) # endif # endif END DO END DO END IF ! ! Load new free-surface values into shared array at both predictor ! and corrector steps. # ifdef WET_DRY_NOT_YET ! Modify new free-surface to Ensure that depth is > Dcrit for masked ! cells. # endif ! DO j=Jstr,Jend DO i=Istr,Iend !> zeta(i,j,knew)=zeta_new(i,j) !> tl_zeta(i,j,knew)=tl_zeta_new(i,j) # if defined WET_DRY_NOT_YET && defined MASKING !> zeta(i,j,knew)=zeta(i,j,knew)+ & !> & (Dcrit(ng)-h(i,j))*(1.0_r8-rmask(i,j)) !> tl_zeta(i,j,knew)=tl_zeta(i,j,knew)- & & tl_h(i,j)*(1.0_r8-rmask(i,j)) # endif END DO END DO ! ! If predictor step, load right-side-term into shared array. ! IF (PREDICTOR_2D_STEP(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend !> rzeta(i,j,krhs)=rhs_zeta(i,j) !> tl_rzeta(i,j,krhs)=tl_rhs_zeta(i,j) END DO END DO IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !> CALL exchange_r2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & rzeta(:,:,krhs)) !> CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_rzeta(:,:,krhs)) END IF # ifdef DISTRIBUTE !> CALL mp_exchange2d (ng, tile, iNLM, 1, & !> & LBi, UBi, LBj, UBj, & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & rzeta(:,:,krhs)) !> CALL mp_exchange2d (ng, tile, iRPM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_rzeta(:,:,krhs)) # endif END IF ! ! Apply mass point sources (volume vertical influx), if any. ! IF (LwSrc(ng)) THEN DO is=1,Nsrc(ng) i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN !> zeta(i,j,knew)=zeta(i,j,knew)+ & !> & SOURCES(ng)%Qbar(is)* & !> & pm(i,j)*pn(i,j)*dtfast(ng) !> !! tl_zeta(i,j,knew)=tl_zeta(i,j,knew)+0.0_r8 END IF END DO END IF ! ! Set free-surface lateral boundary conditions. ! !> CALL zetabc_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & IminS, ImaxS, JminS, JmaxS, & !> & krhs, kstp, knew, & !> & zeta) !> CALL rp_zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & zeta, tl_zeta) IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !> CALL exchange_r2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & zeta(:,:,knew)) !> CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_zeta(:,:,knew)) END IF # ifdef DISTRIBUTE !> CALL mp_exchange2d (ng, tile, iNLM, 1, & !> & LBi, UBi, LBj, UBj, & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & zeta(:,:,knew)) !> CALL mp_exchange2d (ng, tile, iRPM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_zeta(:,:,knew)) # endif ! !======================================================================= ! Compute right-hand-side for the 2D momentum equations. !======================================================================= ! !----------------------------------------------------------------------- ! Compute pressure gradient terms. !----------------------------------------------------------------------- ! cff1=0.5_r8*g cff2=1.0_r8/3.0_r8 # if !defined SOLVE3D && defined ATM_PRESS fac3=0.5_r8*100.0_r8/rho0 # endif DO j=Jstr,Jend DO i=IstrU,Iend !> rhs_ubar(i,j)=cff1*on_u(i,j)* & !> & ((h(i-1,j)+ & !> & h(i ,j))* & !> & (gzeta(i-1,j)- & !> & gzeta(i ,j))+ & # if defined VAR_RHO_2D && defined SOLVE3D !> & (h(i-1,j)- & !> & h(i ,j))* & !> & (gzetaSA(i-1,j)+ & !> & gzetaSA(i ,j)+ & !> & cff2*(rhoA(i-1,j)- & !> & rhoA(i ,j))* & !> & (zwrk(i-1,j)- & !> & zwrk(i ,j)))+ & # endif !> & (gzeta2(i-1,j)- & !> & gzeta2(i ,j))) !> tl_rhs_ubar(i,j)=cff1*on_u(i,j)* & & ((h(i-1,j)+ & & h(i ,j))* & & (tl_gzeta(i-1,j)- & & tl_gzeta(i ,j))+ & # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (tl_h(i-1,j)+ & & tl_h(i ,j))* & & (gzeta(i-1,j)- & & gzeta(i ,j))- & # ifdef TL_IOMS & (h(i-1,j)+ & & h(i ,j))* & & (gzeta(i-1,j)- & & gzeta(i ,j))+ & # endif # endif # if defined VAR_RHO_2D && defined SOLVE3D # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (tl_h(i-1,j)- & & tl_h(i ,j))* & & (gzetaSA(i-1,j)+ & & gzetaSA (i ,j)+ & & cff2*(rhoA(i-1,j)- & & rhoA(i ,j))* & & (zwrk(i-1,j)- & & zwrk(i ,j)))+ & # endif & (h(i-1,j)- & & h(i ,j))* & & (tl_gzetaSA(i-1,j)+ & & tl_gzetaSA(i ,j)+ & & cff2*((tl_rhoA(i-1,j)- & & tl_rhoA(i ,j))* & & (zwrk(i-1,j)- & & zwrk(i ,j))+ & & (rhoA(i-1,j)- & & rhoA(i ,j))* & & (tl_zwrk(i-1,j)- & & tl_zwrk(i ,j))))- & # ifdef TL_IOMS # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (h(i-1,j)- & & h(i ,j))* & & (gzetaSA(i-1,j)+ & & gzetaSA(i ,j))- & & 2.0_r8* & # endif & (h(i-1,j)- & & h(i ,j))* & & (cff2*(rhoA(i-1,j)- & & rhoA(i ,j))* & & (zwrk(i-1,j)- & & zwrk(i ,j)))+ & # endif # endif & (tl_gzeta2(i-1,j)- & & tl_gzeta2(i ,j))) # if defined ATM_PRESS && !defined SOLVE3D !> rhs_ubar(i,j)=rhs_ubar(i,j)+ & !> & fac3*on_u(i,j)* & !> & (h(i-1,j)+h(i,j)+ & !> & gzeta(i-1,j)+gzeta(i,j))* & !> & (Pair(i-1,j)-Pair(i,j)) !> # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & fac3*on_u(i,j)* & & (tl_h(i-1,j)+tl_h(i,j)+ & & tl_gzeta(i-1,j)+tl_gzeta(i,j))* & & (Pair(i-1,j)-Pair(i,j)) # else tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & fac3*on_u(i,j)* & & (tl_gzeta(i-1,j)+tl_gzeta(i,j))* & & (Pair(i-1,j)-Pair(i,j)) # endif # endif # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2pgrd)=rhs_ubar(i,j) # endif END DO IF (j.ge.JstrV) THEN DO i=Istr,Iend !> rhs_vbar(i,j)=cff1*om_v(i,j)* & !> & ((h(i,j-1)+ & !> & h(i,j ))* & !> & (gzeta(i,j-1)- & !> & gzeta(i,j ))+ & # if defined VAR_RHO_2D && defined SOLVE3D !> & (h(i,j-1)- & !> & h(i,j ))* & !> & (gzetaSA(i,j-1)+ & !> & gzetaSA(i,j )+ & !> & cff2*(rhoA(i,j-1)- & !> & rhoA(i,j ))* & !> & (zwrk(i,j-1)- & !> & zwrk(i,j )))+ & # endif !> & (gzeta2(i,j-1)- & !> & gzeta2(i,j ))) !> tl_rhs_vbar(i,j)=cff1*om_v(i,j)* & & ((h(i,j-1)+ & & h(i,j ))* & & (tl_gzeta(i,j-1)- & & tl_gzeta(i,j ))+ & # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (tl_h(i,j-1)+ & & tl_h(i,j ))* & & (gzeta(i,j-1)- & & gzeta(i,j ))- & # ifdef TL_IOMS & (h(i,j-1)+ & & h(i,j ))* & & (gzeta(i,j-1)- & & gzeta(i,j ))+ & # endif # endif # if defined VAR_RHO_2D && defined SOLVE3D # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (tl_h(i,j-1)- & & tl_h(i,j ))* & & (gzetaSA(i,j-1)+ & & gzetaSA(i,j )+ & & cff2*(rhoA(i,j-1)- & & rhoA(i,j ))* & & (zwrk(i,j-1)- & & zwrk(i,j )))+ & # endif & (h(i,j-1)- & & h(i,j ))* & & (tl_gzetaSA(i,j-1)+ & & tl_gzetaSA(i,j )+ & & cff2*((tl_rhoA(i,j-1)- & & tl_rhoA(i,j ))* & & (zwrk(i,j-1)- & & zwrk(i,j ))+ & & (rhoA(i,j-1)- & & rhoA(i,j ))* & & (tl_zwrk(i,j-1)- & & tl_zwrk(i,j ))))- & # ifdef TL_IOMS # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & (h(i,j-1)- & & h(i,j ))* & & (gzetaSA(i,j-1)+ & & gzetaSA(i,j ))- & & 2.0_r8* & # endif & (h(i,j-1)- & & h(i,j ))* & & (cff2*(rhoA(i,j-1)- & & rhoA(i,j ))* & & (zwrk(i,j-1)- & & zwrk(i,j )))+ & # endif # endif & (tl_gzeta2(i,j-1)- & & tl_gzeta2(i,j ))) # if defined ATM_PRESS && !defined SOLVE3D !> rhs_vbar(i,j)=rhs_vbar(i,j)+ & !> & fac3*om_v(i,j)* & !> & (h(i,j-1)+h(i,j)+ & !> & gzeta(i,j-1)+gzeta(i,j))* & !> & (Pair(i,j-1)-Pair(i,j)) !> # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & fac3*om_v(i,j)* & & (tl_h(i,j-1)+tl_h(i,j)+ & & tl_gzeta(i,j-1)+tl_gzeta(i,j))* & & (Pair(i,j-1)-Pair(i,j)) # else tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & fac3*om_v(i,j)* & & (tl_gzeta(i,j-1)+tl_gzeta(i,j))* & & (Pair(i,j-1)-Pair(i,j)) # endif # endif # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2pgrd)=rhs_vbar(i,j) # endif END DO END IF END DO # ifdef UV_ADV ! !----------------------------------------------------------------------- ! Add in horizontal advection of momentum. !----------------------------------------------------------------------- # ifdef UV_C2ADVECTION ! ! Second-order, centered differences advection. ! DO j=Jstr,Jend DO i=IstrU-1,Iend UFx(i,j)=0.25_r8*(DUon(i,j)+DUon(i+1,j))* & & (ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) tl_UFx(i,j)=0.25_r8* & & ((tl_DUon(i,j)+tl_DUon(i+1,j))* & & (ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs))+ & & (DUon(i,j)+DUon(i+1,j))* & & (tl_ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i ,j)+ & & tl_ubar_stokes(i+1,j)+ & # endif & tl_ubar(i+1,j,krhs)))- & # ifdef TL_IOMS & UFx(i,j) # endif END DO END DO ! DO j=Jstr,Jend+1 DO i=IstrU,Iend UFe(i,j)=0.25_r8*(DVom(i,j)+DVom(i-1,j))* & & (ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs)) tl_UFe(i,j)=0.25_r8* & & ((tl_DVom(i,j)+tl_DVom(i-1,j))* & & (ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs))+ & & (DVom(i,j)+DVom(i-1,j))* & & (tl_ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i,j )+ & & tl_ubar_stokes(i,j-1)+ & # endif & tl_ubar(i,j-1,krhs)))- & # ifdef TL_IOMS & UFe(i,j) # endif END DO END DO ! DO j=JstrV,Jend DO i=Istr,Iend+1 VFx(i,j)=0.25_r8*(DUon(i,j)+DUon(i,j-1))* & & (vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs)) tl_VFx(i,j)=0.25_r8* & & ((tl_DUon(i,j)+tl_DUon(i,j-1))* & & (vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs))+ & & (DUon(i,j)+DUon(i,j-1))* & & (tl_vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i ,j)+ & & tl_vbar_stokes(i-1,j)+ & # endif & tl_vbar(i-1,j,krhs)))- & # ifdef TL_IOMS & VFx(i,j) # endif END DO END DO ! DO j=JstrV-1,Jend DO i=Istr,Iend VFe(i,j)=0.25_r8*(DVom(i,j)+DVom(i,j+1))* & & (vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) tl_VFe(i,j)=0.25_r8* & & ((tl_DVom(i,j)+tl_DVom(i,j+1))* & & (vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs))+ & & (DVom(i,j)+DVom(i,j+1))* & & (tl_vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i,j )+ & & tl_vbar_stokes(i,j+1)+ & # endif & tl_vbar(i,j+1,krhs)))- & # ifdef TL_IOMS & VFe(i,j) # endif END DO END DO # else ! ! Fourth-order, centered differences advection. ! DO j=Jstr,Jend DO i=IstrUm1,Iendp1 grad (i,j)=ubar(i-1,j,krhs)-2.0_r8*ubar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i-1,j)-2.0_r8*ubar_stokes(i,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs) tl_grad(i,j)=tl_ubar(i-1,j,krhs)-2.0_r8*tl_ubar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i-1,j)-2.0_r8*tl_ubar_stokes(i,j)+& & tl_ubar_stokes(i+1,j)+ & # endif & tl_ubar(i+1,j,krhs) Dgrad(i,j)=DUon(i-1,j)-2.0_r8*DUon(i,j)+DUon(i+1,j) tl_Dgrad(i,j)=tl_DUon(i-1,j)-2.0_r8*tl_DUon(i,j)+ & & tl_DUon(i+1,j) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend grad (Istr,j)=grad (Istr+1,j) tl_grad (Istr,j)=tl_grad (Istr+1,j) Dgrad(Istr,j)=Dgrad(Istr+1,j) tl_Dgrad(Istr,j)=tl_Dgrad(Istr+1,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend grad (Iend+1,j)=grad (Iend,j) tl_grad (Iend+1,j)=tl_grad (Iend,j) Dgrad(Iend+1,j)=Dgrad(Iend,j) tl_Dgrad(Iend+1,j)=tl_Dgrad(Iend,j) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=Jstr,Jend DO i=IstrU-1,Iend UFx(i,j)=0.25_r8*(ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)- & & cff*(grad (i,j)+grad (i+1,j)))* & & (DUon(i,j)+DUon(i+1,j)- & & cff*(Dgrad(i,j)+Dgrad(i+1,j))) tl_UFx(i,j)=0.25_r8* & & ((ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)- & & cff*(grad (i,j)+grad (i+1,j)))* & & (tl_DUon(i,j)+tl_DUon(i+1,j)- & & cff*(tl_Dgrad(i,j)+tl_Dgrad(i+1,j)))+ & & (tl_ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i ,j)+ & & tl_ubar_stokes(i+1,j)+ & # endif & tl_ubar(i+1,j,krhs)- & & cff*(tl_grad (i,j)+tl_grad (i+1,j)))* & & (DUon(i,j)+DUon(i+1,j)- & & cff*(Dgrad(i,j)+Dgrad(i+1,j))))- & # ifdef TL_IOMS & UFx(i,j) # endif END DO END DO ! DO j=Jstrm1,Jendp1 DO i=IstrU,Iend grad(i,j)=ubar(i,j-1,krhs)-2.0_r8*ubar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i,j-1)-2.0_r8*ubar_stokes(i,j)+ & & ubar_stokes(i,j+1)+ & # endif & ubar(i,j+1,krhs) tl_grad(i,j)=tl_ubar(i,j-1,krhs)-2.0_r8*tl_ubar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i,j-1)-2.0_r8*tl_ubar_stokes(i,j)+& & tl_ubar_stokes(i,j+1)+ & # endif & tl_ubar(i,j+1,krhs) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jstr-1)=grad(i,Jstr) tl_grad(i,Jstr-1)=tl_grad(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jend+1)=grad(i,Jend) tl_grad(i,Jend+1)=tl_grad(i,Jend) END DO END IF END IF DO j=Jstr,Jend+1 DO i=IstrU-1,Iend Dgrad(i,j)=DVom(i-1,j)-2.0_r8*DVom(i,j)+DVom(i+1,j) tl_Dgrad(i,j)=tl_DVom(i-1,j)-2.0_r8*tl_DVom(i,j)+ & & tl_DVom(i+1,j) END DO END DO cff=1.0_r8/6.0_r8 DO j=Jstr,Jend+1 DO i=IstrU,Iend UFe(i,j)=0.25_r8*(ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs)- & & cff*(grad (i,j)+grad (i,j-1)))* & & (DVom(i,j)+DVom(i-1,j)- & & cff*(Dgrad(i,j)+Dgrad(i-1,j))) tl_UFe(i,j)=0.25_r8* & & ((tl_ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i,j )+ & & tl_ubar_stokes(i,j-1)+ & # endif & tl_ubar(i,j-1,krhs)- & & cff*(tl_grad (i,j)+tl_grad (i,j-1)))* & & (DVom(i,j)+DVom(i-1,j)- & & cff*(Dgrad(i,j)+Dgrad(i-1,j)))+ & & (ubar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs)- & & cff*(grad (i,j)+grad (i,j-1)))* & & (tl_DVom(i,j)+tl_DVom(i-1,j)- & & cff*(tl_Dgrad(i,j)+tl_Dgrad(i-1,j))))- & # ifdef TL_IOMS & UFe(i,j) # endif END DO END DO ! DO j=JstrV,Jend DO i=Istrm1,Iendp1 grad(i,j)=vbar(i-1,j,krhs)-2.0_r8*vbar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i-1,j)-2.0_r8*vbar_stokes(i,j)+ & & vbar_stokes(i+1,j)+ & # endif & vbar(i+1,j,krhs) tl_grad(i,j)=tl_vbar(i-1,j,krhs)-2.0_r8*tl_vbar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i-1,j)-2.0_r8*tl_vbar_stokes(i,j)+& & tl_vbar_stokes(i+1,j)+ & # endif & tl_vbar(i+1,j,krhs) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrV,Jend grad(Istr-1,j)=grad(Istr,j) tl_grad(Istr-1,j)=tl_grad(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrV,Jend grad(Iend+1,j)=grad(Iend,j) tl_grad(Iend+1,j)=tl_grad(Iend,j) END DO END IF END IF DO j=JstrV-1,Jend DO i=Istr,Iend+1 Dgrad(i,j)=DUon(i,j-1)-2.0_r8*DUon(i,j)+DUon(i,j+1) tl_Dgrad(i,j)=tl_DUon(i,j-1)-2.0_r8*tl_DUon(i,j)+ & & tl_DUon(i,j+1) END DO END DO cff=1.0_r8/6.0_r8 DO j=JstrV,Jend DO i=Istr,Iend+1 VFx(i,j)=0.25_r8*(vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs)- & & cff*(grad (i,j)+grad (i-1,j)))* & & (DUon(i,j)+DUon(i,j-1)- & & cff*(Dgrad(i,j)+Dgrad(i,j-1))) tl_VFx(i,j)=0.25_r8* & & ((tl_vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i ,j)+ & & tl_vbar_stokes(i-1,j)+ & # endif & tl_vbar(i-1,j,krhs)- & & cff*(tl_grad (i,j)+tl_grad (i-1,j)))* & & (DUon(i,j)+DUon(i,j-1)- & & cff*(Dgrad(i,j)+Dgrad(i,j-1)))+ & & (vbar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs)- & & cff*(grad (i,j)+grad (i-1,j)))* & & (tl_DUon(i,j)+tl_DUon(i,j-1)- & & cff*(tl_Dgrad(i,j)+tl_Dgrad(i,j-1))))- & # ifdef TL_IOMS & VFx(i,j) # endif END DO END DO ! DO j=JstrVm1,Jendp1 DO i=Istr,Iend grad(i,j)=vbar(i,j-1,krhs)-2.0_r8*vbar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j-1)-2.0_r8*vbar_stokes(i,j)+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs) tl_grad(i,j)=tl_vbar(i,j-1,krhs)-2.0_r8*tl_vbar(i,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i,j-1)-2.0_r8*tl_vbar_stokes(i,j)+& & tl_vbar_stokes(i,j+1)+ & # endif & tl_vbar(i,j+1,krhs) Dgrad(i,j)=DVom(i,j-1)-2.0_r8*DVom(i,j)+DVom(i,j+1) tl_Dgrad(i,j)=tl_DVom(i,j-1)-2.0_r8*tl_DVom(i,j)+ & & tl_DVom(i,j+1) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jstr)=grad (i,Jstr+1) tl_grad (i,Jstr)=tl_grad (i,Jstr+1) Dgrad(i,Jstr)=Dgrad(i,Jstr+1) tl_Dgrad(i,Jstr)=tl_Dgrad(i,Jstr+1) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jend+1)=grad (i,Jend) tl_grad (i,Jend+1)=tl_grad (i,Jend) Dgrad(i,Jend+1)=Dgrad(i,Jend) tl_Dgrad(i,Jend+1)=tl_Dgrad(i,Jend) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=JstrV-1,Jend DO i=Istr,Iend VFe(i,j)=0.25_r8*(vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)- & & cff*(grad (i,j)+grad (i,j+1)))* & & (DVom(i,j)+DVom(i,j+1)- & & cff*(Dgrad(i,j)+Dgrad(i,j+1))) tl_VFe(i,j)=0.25_r8* & & ((tl_vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i,j )+ & & tl_vbar_stokes(i,j+1)+ & # endif & tl_vbar(i,j+1,krhs)- & & cff*(tl_grad (i,j)+tl_grad (i,j+1)))* & & (DVom(i,j)+DVom(i,j+1)- & & cff*(Dgrad(i,j)+Dgrad(i,j+1)))+ & & (vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)- & & cff*(grad (i,j)+grad (i,j+1)))* & & (tl_DVom(i,j)+tl_DVom(i,j+1)- & & cff*(tl_Dgrad(i,j)+tl_Dgrad(i,j+1))))- & # ifdef TL_IOMS & VFe(i,j) # endif END DO END DO # endif ! DO j=Jstr,Jend DO i=IstrU,Iend !> cff1=UFx(i,j)-UFx(i-1,j) !> tl_cff1=tl_UFx(i,j)-tl_UFx(i-1,j) !> cff2=UFe(i,j+1)-UFe(i,j) !> tl_cff2=tl_UFe(i,j+1)-tl_UFe(i,j) !> fac=cff1+cff2 !> tl_fac=tl_cff1+tl_cff2 !> rhs_ubar(i,j)=rhs_ubar(i,j)-fac !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_fac # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2xadv)=-cff1 !! DiaU2rhs(i,j,M2yadv)=-cff2 !! DiaU2rhs(i,j,M2hadv)=-fac # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> cff1=VFx(i+1,j)-VFx(i,j) !> tl_cff1=tl_VFx(i+1,j)-tl_VFx(i,j) !> cff2=VFe(i,j)-VFe(i,j-1) !> tl_cff2=tl_VFe(i,j)-tl_VFe(i,j-1) !> fac=cff1+cff2 !> tl_fac=tl_cff1+tl_cff2 !> rhs_vbar(i,j)=rhs_vbar(i,j)-fac !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2xadv)=-cff1 !! DiaV2rhs(i,j,M2yadv)=-cff2 !! DiaV2rhs(i,j,M2hadv)=-fac # endif END DO END DO # endif # ifdef UV_COR ! !----------------------------------------------------------------------- ! Add in Coriolis term. !----------------------------------------------------------------------- ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=0.5_r8*Drhs(i,j)*fomn(i,j) tl_cff=0.5_r8*tl_Drhs(i,j)*fomn(i,j) UFx(i,j)=cff*(vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) tl_UFx(i,j)=tl_cff*(vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs))+ & & cff*(tl_vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i,j )+ & & tl_vbar_stokes(i,j+1)+ & # endif & tl_vbar(i,j+1,krhs))- & # ifdef TL_IOMS & UFx(i,j) # endif VFe(i,j)=cff*(ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) tl_VFe(i,j)=tl_cff*(ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs))+ & & cff*(tl_ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i ,j)+ & & tl_ubar_stokes(i+1,j)+ & # endif & tl_ubar(i+1,j,krhs))- & # ifdef TL_IOMS & VFe(i,j) # endif END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend !> fac1=0.5_r8*(UFx(i,j)+UFx(i-1,j)) !> tl_fac1=0.5_r8*(tl_UFx(i,j)+tl_UFx(i-1,j)) !> rhs_ubar(i,j)=rhs_ubar(i,j)+fac1 !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac1 # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2fcor)=fac1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> fac1=0.5_r8*(VFe(i,j)+VFe(i,j-1)) !> tl_fac1=0.5_r8*(tl_VFe(i,j)+tl_VFe(i,j-1)) !> rhs_vbar(i,j)=rhs_vbar(i,j)-fac1 !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac1 # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2fcor)=-fac1 # endif END DO END DO # endif # if defined CURVGRID && defined UV_ADV ! !----------------------------------------------------------------------- ! Add in curvilinear transformation terms. !----------------------------------------------------------------------- ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff1=0.5_r8*(vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) tl_cff1=0.5_r8*(tl_vbar(i,j ,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_vbar_stokes(i,j )+ & & tl_vbar_stokes(i,j+1)+ & # endif & tl_vbar(i,j+1,krhs)) cff2=0.5_r8*(ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) tl_cff2=0.5_r8*(tl_ubar(i ,j,krhs)+ & # ifdef NEARSHORE_MELLOR & tl_ubar_stokes(i ,j)+ & & tl_ubar_stokes(i+1,j)+ & # endif & tl_ubar(i+1,j,krhs)) cff3=cff1*dndx(i,j) tl_cff3=tl_cff1*dndx(i,j) cff4=cff2*dmde(i,j) tl_cff4=tl_cff2*dmde(i,j) cff=Drhs(i,j)*(cff3-cff4) tl_cff=tl_Drhs(i,j)*(cff3-cff4)+ & & Drhs(i,j)*(tl_cff3-tl_cff4)- & # ifdef TL_IOMS & cff # endif !> UFx(i,j)=cff*cff1 !> tl_UFx(i,j)=tl_cff*cff1+cff*tl_cff1- & # ifdef TL_IOMS & cff*cff1 # endif !> VFe(i,j)=cff*cff2 !> tl_VFe(i,j)=tl_cff*cff2+cff*tl_cff2- & # ifdef TL_IOMS & cff*cff2 # endif # if defined DIAGNOSTICS_UV !! cff=Drhs(i,j)*cff4 !! Uwrk(i,j)=-cff*cff1 ! ubar equation, ETA-term !! Vwrk(i,j)=-cff*cff2 ! vbar equation, ETA-term # endif END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend !> fac1=0.5_r8*(UFx(i,j)+UFx(i-1,j)) !> tl_fac1=0.5_r8*(tl_UFx(i,j)+tl_UFx(i-1,j)) !> rhs_ubar(i,j)=rhs_ubar(i,j)+fac1 !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac1 # if defined DIAGNOSTICS_UV !! fac2=0.5_r8*(Uwrk(i,j)+Uwrk(i-1,j)) !! DiaU2rhs(i,j,M2xadv)=DiaU2rhs(i,j,M2xadv)+fac1-fac2 !! DiaU2rhs(i,j,M2yadv)=DiaU2rhs(i,j,M2yadv)+fac2 !! DiaU2rhs(i,j,M2hadv)=DiaU2rhs(i,j,M2hadv)+fac1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> fac1=0.5_r8*(VFe(i,j)+VFe(i,j-1)) !> tl_fac1=0.5_r8*(tl_VFe(i,j)+tl_VFe(i,j-1)) !> rhs_vbar(i,j)=rhs_vbar(i,j)-fac1 !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac1 # if defined DIAGNOSTICS_UV !! fac2=0.5_r8*(Vwrk(i,j)+Vwrk(i,j-1)) !! DiaV2rhs(i,j,M2xadv)=DiaV2rhs(i,j,M2xadv)-fac1+fac2 !! DiaV2rhs(i,j,M2yadv)=DiaV2rhs(i,j,M2yadv)-fac2 !! DiaV2rhs(i,j,M2hadv)=DiaV2rhs(i,j,M2hadv)-fac1 # endif END DO END DO # endif # if defined UV_VIS2 || defined UV_VIS4 || defined RPM_RELAXATION ! !----------------------------------------------------------------------- ! If horizontal mixing, compute total depth at PSI-points. !----------------------------------------------------------------------- ! # ifdef UV_VIS4 DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 # else DO j=Jstr,Jend+1 DO i=Istr,Iend+1 # endif Drhs_p(i,j)=0.25_r8*(Drhs(i,j )+Drhs(i-1,j )+ & & Drhs(i,j-1)+Drhs(i-1,j-1)) tl_Drhs_p(i,j)=0.25_r8*(tl_Drhs(i,j )+tl_Drhs(i-1,j )+ & & tl_Drhs(i,j-1)+tl_Drhs(i-1,j-1)) END DO END DO # endif # ifdef UV_VIS2 ! !----------------------------------------------------------------------- ! Add in horizontal harmonic viscosity. !----------------------------------------------------------------------- ! ! Compute flux-components of the horizontal divergence of the stress ! tensor (m5/s2) in XI- and ETA-directions. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=visc2_r(i,j)*Drhs(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs))) tl_cff=visc2_r(i,j)*0.5_r8* & & (tl_Drhs(i,j)* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs)))+ & & Drhs(i,j)* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*tl_ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*tl_ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*tl_vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*tl_vbar(i,j ,krhs))))- & # ifdef TL_IOMS & cff # endif !> UFx(i,j)=on_r(i,j)*on_r(i,j)*cff !> tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff !> VFe(i,j)=om_r(i,j)*om_r(i,j)*cff !> tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend+1 cff=visc2_p(i,j)*Drhs_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs))) tl_cff=visc2_p(i,j)*0.5_r8* & & (tl_Drhs_p(i,j)* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs)))+ & & Drhs_p(i,j)* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*tl_vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*tl_vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*tl_ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*tl_ubar(i,j-1,krhs))))- & # ifdef TL_IOMS & cff # endif # ifdef MASKING !> cff=cff*pmask(i,j) !> tl_cff=tl_cff*pmask(i,j) # endif !> UFe(i,j)=om_p(i,j)*om_p(i,j)*cff !> tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff !> VFx(i,j)=on_p(i,j)*on_p(i,j)*cff !> tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff END DO END DO ! ! Add in harmonic viscosity. ! DO j=Jstr,Jend DO i=IstrU,Iend !> cff1=0.5_r8*(pn(i-1,j)+pn(i,j))*(UFx(i,j )-UFx(i-1,j)) !> tl_cff1=0.5_r8*(pn(i-1,j)+pn(i,j))* & & (tl_UFx(i,j )-tl_UFx(i-1,j)) !> cff2=0.5_r8*(pm(i-1,j)+pm(i,j))*(UFe(i,j+1)-UFe(i ,j)) !> tl_cff2=0.5_r8*(pm(i-1,j)+pm(i,j))* & & (tl_UFe(i,j+1)-tl_UFe(i ,j)) !> fac=cff1+cff2 !> tl_fac=tl_cff1+tl_cff2 !> rhs_ubar(i,j)=rhs_ubar(i,j)+fac !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2hvis)=fac !! DiaU2rhs(i,j,M2xvis)=cff1 !! DiaU2rhs(i,j,M2yvis)=cff2 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> cff1=0.5_r8*(pn(i,j-1)+pn(i,j))*(VFx(i+1,j)-VFx(i,j )) !> tl_cff1=0.5_r8*(pn(i,j-1)+pn(i,j))* & & (tl_VFx(i+1,j)-tl_VFx(i,j )) !> cff2=0.5_r8*(pm(i,j-1)+pm(i,j))*(VFe(i ,j)-VFe(i,j-1)) !> tl_cff2=0.5_r8*(pm(i,j-1)+pm(i,j))* & & (tl_VFe(i ,j)-tl_VFe(i,j-1)) !> fac=cff1-cff2 !> tl_fac=tl_cff1-tl_cff2 !> rhs_vbar(i,j)=rhs_vbar(i,j)+fac !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_fac # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hvis)=fac !! DiaV2rhs(i,j,M2xvis)= cff1 !! DiaV2rhs(i,j,M2yvis)=-cff2 # endif END DO END DO # endif # ifdef UV_VIS4 ! !----------------------------------------------------------------------- ! Add in horizontal biharmonic viscosity. The biharmonic operator ! is computed by applying the harmonic operator twice. !----------------------------------------------------------------------- ! ! Compute flux-components of the horizontal divergence of the stress ! tensor (m4 s^-3/2) in XI- and ETA-directions. It is assumed here ! that "visc4_r" and "visc4_p" are the squared root of the biharmonic ! viscosity coefficient. For momentum balance purposes, the total ! thickness "D" appears only when computing the second harmonic ! operator. ! DO j=JstrVm2,Jendp1 DO i=IstrUm2,Iendp1 cff=visc4_r(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs))) tl_cff=visc4_r(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*tl_ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*tl_ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*tl_vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*tl_vbar(i,j ,krhs))) UFx(i,j)=on_r(i,j)*on_r(i,j)*cff tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff VFe(i,j)=om_r(i,j)*om_r(i,j)*cff tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff END DO END DO DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 cff=visc4_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs))) tl_cff=visc4_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*tl_vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*tl_vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*tl_ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*tl_ubar(i,j-1,krhs))) # ifdef MASKING cff=cff*pmask(i,j) tl_cff=tl_cff*pmask(i,j) # endif UFe(i,j)=om_p(i,j)*om_p(i,j)*cff tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff VFx(i,j)=on_p(i,j)*on_p(i,j)*cff tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff END DO END DO ! ! Compute first harmonic operator (m s^-3/2). ! DO j=Jstrm1,Jendp1 DO i=IstrUm1,Iendp1 LapU(i,j)=0.125_r8* & & (pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & & ((pn(i-1,j)+pn(i,j))* & & (UFx(i,j )-UFx(i-1,j))+ & & (pm(i-1,j)+pm(i,j))* & & (UFe(i,j+1)-UFe(i ,j))) tl_LapU(i,j)=0.125_r8* & & (pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & & ((pn(i-1,j)+pn(i,j))* & & (tl_UFx(i,j )-tl_UFx(i-1,j))+ & & (pm(i-1,j)+pm(i,j))* & & (tl_UFe(i,j+1)-tl_UFe(i ,j))) END DO END DO DO j=JstrVm1,Jendp1 DO i=Istrm1,Iendp1 LapV(i,j)=0.125_r8* & & (pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & & ((pn(i,j-1)+pn(i,j))* & & (VFx(i+1,j)-VFx(i,j ))- & & (pm(i,j-1)+pm(i,j))* & & (VFe(i ,j)-VFe(i,j-1))) tl_LapV(i,j)=0.125_r8* & & (pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & & ((pn(i,j-1)+pn(i,j))* & & (tl_VFx(i+1,j)-tl_VFx(i,j ))- & & (pm(i,j-1)+pm(i,j))* & & (tl_VFe(i ,j)-tl_VFe(i,j-1))) END DO END DO ! ! Apply boundary conditions (other than periodic) to the first ! harmonic operator. These are gradient or closed (free slip or ! no slip) boundary conditions. ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (tl_LBC(iwest,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=0.0_r8 tl_LapU(IstrU-1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=LapU(IstrU,j) tl_LapU(IstrU-1,j)=tl_LapU(IstrU,j) END DO END IF IF (tl_LBC(iwest,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=gamma2(ng)*LapV(Istr,j) tl_LapV(Istr-1,j)=gamma2(ng)*tl_LapV(Istr,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=0.0_r8 tl_LapV(Istr-1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (tl_LBC(ieast,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=0.0_r8 tl_LapU(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=LapU(Iend,j) tl_LapU(Iend+1,j)=tl_LapU(Iend,j) END DO END IF IF (tl_LBC(ieast,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=gamma2(ng)*LapV(Iend,j) tl_LapV(Iend+1,j)=gamma2(ng)*tl_LapV(Iend,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=0.0_r8 tl_LapV(Iend+1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (tl_LBC(isouth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=gamma2(ng)*LapU(i,Jstr) tl_LapU(i,Jstr-1)=gamma2(ng)*tl_LapU(i,Jstr) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=0.0_r8 tl_LapU(i,Jstr-1)=0.0_r8 END DO END IF IF (tl_LBC(isouth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=0.0_r8 tl_LapV(i,JstrV-1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=LapV(i,JstrV) tl_LapV(i,JstrV-1)=tl_LapV(i,JstrV) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (tl_LBC(inorth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=gamma2(ng)*LapU(i,Jend) tl_LapU(i,Jend+1)=gamma2(ng)*tl_LapU(i,Jend) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=0.0_r8 tl_LapU(i,Jend+1)=0.0_r8 END DO END IF IF (tl_LBC(inorth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,Jend+1)=0.0_r8 tl_LapV(i,Jend+1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,Jend+1)=LapV(i,Jend) tl_LapV(i,Jend+1)=tl_LapV(i,Jend) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN LapU(Istr ,Jstr-1)=0.5_r8*(LapU(Istr+1,Jstr-1)+ & & LapU(Istr ,Jstr )) tl_LapU(Istr ,Jstr-1)=0.5_r8*(tl_LapU(Istr+1,Jstr-1)+ & & tl_LapU(Istr ,Jstr )) LapV(Istr-1,Jstr )=0.5_r8*(LapV(Istr-1,Jstr+1)+ & & LapV(Istr ,Jstr )) tl_LapV(Istr-1,Jstr )=0.5_r8*(tl_LapV(Istr-1,Jstr+1)+ & & tl_LapV(Istr ,Jstr )) END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN LapU(Iend+1,Jstr-1)=0.5_r8*(LapU(Iend ,Jstr-1)+ & & LapU(Iend+1,Jstr )) tl_LapU(Iend+1,Jstr-1)=0.5_r8*(tl_LapU(Iend ,Jstr-1)+ & & tl_LapU(Iend+1,Jstr )) LapV(Iend+1,Jstr )=0.5_r8*(LapV(Iend ,Jstr )+ & & LapV(Iend+1,Jstr+1)) tl_LapV(Iend+1,Jstr )=0.5_r8*(tl_LapV(Iend ,Jstr )+ & & tl_LapV(Iend+1,Jstr+1)) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN LapU(Istr ,Jend+1)=0.5_r8*(LapU(Istr+1,Jend+1)+ & & LapU(Istr ,Jend )) tl_LapU(Istr ,Jend+1)=0.5_r8*(tl_LapU(Istr+1,Jend+1)+ & & tl_LapU(Istr ,Jend )) LapV(Istr-1,Jend+1)=0.5_r8*(LapV(Istr ,Jend+1)+ & & LapV(Istr-1,Jend )) tl_LapV(Istr-1,Jend+1)=0.5_r8*(tl_LapV(Istr ,Jend+1)+ & & tl_LapV(Istr-1,Jend )) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN LapU(Iend+1,Jend+1)=0.5_r8*(LapU(Iend ,Jend+1)+ & & LapU(Iend+1,Jend )) tl_LapU(Iend+1,Jend+1)=0.5_r8*(tl_LapU(Iend ,Jend+1)+ & & tl_LapU(Iend+1,Jend )) LapV(Iend+1,Jend+1)=0.5_r8*(LapV(Iend ,Jend+1)+ & & LapV(Iend+1,Jend )) tl_LapV(Iend+1,Jend+1)=0.5_r8*(tl_LapV(Iend ,Jend+1)+ & & tl_LapV(Iend+1,Jend )) END IF END IF ! ! Compute flux-components of the horizontal divergence of the ! biharmonic stress tensor (m4/s2) in XI- and ETA-directions. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=visc4_r(i,j)*Drhs(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*LapU(i+1,j)- & & (pn(i-1,j)+pn(i ,j))*LapU(i ,j))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*LapV(i,j+1)- & & (pm(i,j-1)+pm(i,j ))*LapV(i,j ))) tl_cff=visc4_r(i,j)*0.5_r8* & & (tl_Drhs(i,j)* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*LapU(i+1,j)- & & (pn(i-1,j)+pn(i ,j))*LapU(i ,j))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*LapV(i,j+1)- & & (pm(i,j-1)+pm(i,j ))*LapV(i,j )))+ & & Drhs(i,j)* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*tl_LapU(i+1,j)- & & (pn(i-1,j)+pn(i ,j))*tl_LapU(i ,j))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*tl_LapV(i,j+1)- & & (pm(i,j-1)+pm(i,j ))*tl_LapV(i,j ))))- & # ifdef TL_IOMS & cff # endif !> UFx(i,j)=on_r(i,j)*on_r(i,j)*cff !> tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff !> VFe(i,j)=om_r(i,j)*om_r(i,j)*cff !> tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend+1 cff=visc4_p(i,j)*Drhs_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*LapV(i ,j)- & & (pn(i-1,j-1)+pn(i-1,j))*LapV(i-1,j))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*LapU(i,j )- & & (pm(i-1,j-1)+pm(i,j-1))*LapU(i,j-1))) tl_cff=visc4_p(i,j)*0.5_r8* & & (tl_Drhs_p(i,j)* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*LapV(i ,j)- & & (pn(i-1,j-1)+pn(i-1,j))*LapV(i-1,j))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*LapU(i,j )- & & (pm(i-1,j-1)+pm(i,j-1))*LapU(i,j-1)))+ & & Drhs_p(i,j)* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*tl_LapV(i ,j)- & & (pn(i-1,j-1)+pn(i-1,j))*tl_LapV(i-1,j))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*tl_LapU(i,j )- & & (pm(i-1,j-1)+pm(i,j-1))*tl_LapU(i,j-1))))- & # ifdef TL_IOMS & cff # endif # ifdef MASKING !> cff=cff*pmask(i,j) !> tl_cff=tl_cff*pmask(i,j) # endif !> UFe(i,j)=om_p(i,j)*om_p(i,j)*cff !> tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff !> VFx(i,j)=on_p(i,j)*on_p(i,j)*cff !> tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff END DO END DO ! ! Add in biharmonic viscosity. ! DO j=Jstr,Jend DO i=IstrU,Iend !> cff1=0.5_r8*(pn(i-1,j)+pn(i,j))*(UFx(i,j )-UFx(i-1,j)) !> tl_cff1=0.5_r8*(pn(i-1,j)+pn(i,j))* & & (tl_UFx(i,j )-tl_UFx(i-1,j)) !> cff2=0.5_r8*(pm(i-1,j)+pm(i,j))*(UFe(i,j+1)-UFe(i ,j)) tl_cff2=0.5_r8*(pm(i-1,j)+pm(i,j))* & & (UFe(i,j+1)-UFe(i ,j)) !> fac=cff1+cff2 !> tl_fac=tl_cff1+tl_cff2 !> rhs_ubar(i,j)=rhs_ubar(i,j)+fac !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2hvis)=fac !! DiaU2rhs(i,j,M2xvis)=cff1 !! DiaU2rhs(i,j,M2yvis)=cff2 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> cff1=0.5_r8*(pn(i,j-1)+pn(i,j))*(VFx(i+1,j)-VFx(i,j )) !> tl_cff1=0.5_r8*(pn(i,j-1)+pn(i,j))* & & (tl_VFx(i+1,j)-tl_VFx(i,j )) !> cff2=0.5_r8*(pm(i,j-1)+pm(i,j))*(VFe(i ,j)-VFe(i,j-1)) !> tl_cff2=0.5_r8*(pm(i,j-1)+pm(i,j))* & & (tl_VFe(i ,j)-tl_VFe(i,j-1)) !> fac=cff1-cff2 !> tl_fac=tl_cff1-tl_cff2 !> rhs_vbar(i,j)=rhs_vbar(i,j)+fac !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_fac # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hvis)=fac !! DiaV2rhs(i,j,M2xvis)= cff1 !! DiaV2rhs(i,j,M2yvis)=-cff2 # endif END DO END DO # endif # ifdef RPM_RELAXATION ! !----------------------------------------------------------------------- ! Relaxe current representer tangent linear 2D momentum to previous ! Picard iteration solution (assumed constant over all barotropic ! timestep) to improve stability and convergence. !----------------------------------------------------------------------- ! ! Compute flux-components of the diffusive relaxation (m4/s2) in XI- ! and ETA-directions. ! IF (tl_M2diff(ng).gt.0.0_r8) THEN DO j=Jstr,Jend DO i=IstrU-1,Iend tl_UFx(i,j)=tl_M2diff(ng)*pmon_r(i,j)*Drhs(i,j)* & & (tl_ubar(i+1,j,krhs)-ubar(i+1,j,krhs)- & & tl_ubar(i ,j,krhs)+ubar(i ,j,krhs)) END DO END DO DO j=Jstr,Jend+1 DO i=IstrU,Iend tl_UFe(i,j)=tl_M2diff(ng)*pnom_p(i,j)*Drhs_p(i,j)* & & (tl_ubar(i,j ,krhs)-ubar(i,j ,krhs)- & & tl_ubar(i,j-1,krhs)+ubar(i,j-1,krhs)) # ifdef MASKING tl_UFe(i,j)=tl_UFe(i,j)*pmask(i,j) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend+1 tl_VFx(i,j)=tl_M2diff(ng)*pmon_p(i,j)*Drhs_p(i,j)* & & (tl_vbar(i ,j,krhs)-vbar(i ,j,krhs)- & & tl_vbar(i-1,j,krhs)+vbar(i-1,j,krhs)) # ifdef MASKING tl_VFx(i,j)=tl_VFx(i,j)*pmask(i,j) # endif END DO END DO DO j=JstrV-1,Jend DO i=Istr,Iend tl_VFe(i,j)=tl_M2diff(ng)*pnom_r(i,j)*Drhs(i,j)* & & (tl_vbar(i,j+1,krhs)-vbar(i,j+1,krhs)- & & tl_vbar(i,j ,krhs)+vbar(i,j ,krhs)) END DO END DO ! ! Add in diffusion relaxation term. ! DO j=Jstr,Jend DO i=IstrU,Iend tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & tl_UFx(i,j)-tl_UFx(i-1,j)+ & & tl_UFe(i,j+1)-tl_UFe(i,j) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & tl_VFx(i+1,j)-tl_VFx(i,j)+ & & tl_VFe(i,j)-tl_VFe(i,j-1) END DO END DO END IF # endif # if defined NEARSHORE_MELLOR && \ (!defined SOLVE3D || defined DIAGNOSTICS_UV) ! !----------------------------------------------------------------------- ! Add in radiation stress terms. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend !> cff1=rustr2d(i,j)*om_u(i,j)*on_u(i,j) !> tl_cff1=tl_rustr2d(i,j)*om_u(i,j)*on_u(i,j) !> cff2=rulag2d(i,j) !> tl_cff2=tl_rulag2d(i,j) # ifndef SOLVE3D !> rhs_ubar(i,j)=rhs_ubar(i,j)-cff1-cff2 !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_cff1-tl_cff2 # endif # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2hrad)=-cff1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> cff1=rvstr2d(i,j)*om_v(i,j)*on_v(i,j) !> tl_cff1=tl_rvstr2d(i,j)*om_v(i,j)*on_v(i,j) !> cff2=rvlag2d(i,j) !> tl_cff2=tl_rvlag2d(i,j) # ifndef SOLVE3D !> rhs_vbar(i,j)=rhs_vbar(i,j)-cff1-cff2 !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_cff1-tl_cff2 # endif # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hrad)=-cff1 # endif END DO END DO # endif # ifndef SOLVE3D ! !----------------------------------------------------------------------- ! Add in bottom stress. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend !> fac=bustr(i,j)*om_u(i,j)*on_u(i,j) !> tl_fac=tl_bustr(i,j)*om_u(i,j)*on_u(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)-fac !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_fac # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2bstr)=-fac # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> fac=bvstr(i,j)*om_v(i,j)*on_v(i,j) !> tl_fac=tl_bvstr(i,j)*om_v(i,j)*on_v(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)-fac !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2bstr)=-fac # endif END DO END DO # else # ifdef DIAGNOSTICS_UV !! !! Initialize the stress term if no bottom friction is defined. !! !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2rhs(i,j,M2bstr)=0.0_r8 !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2rhs(i,j,M2bstr)=0.0_r8 !! END DO !! END DO # endif # endif ! !----------------------------------------------------------------------- ! Add in nudging of 2D momentum climatology. !----------------------------------------------------------------------- ! IF (LnudgeM2CLM(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i-1,j)+ & & CLIMA(ng)%M2nudgcof(i ,j))* & & om_u(i,j)*on_u(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)+ & !> & cff*(Drhs(i-1,j)+Drhs(i,j))* & !> & (CLIMA(ng)%ubarclm(i,j)- !> & ubar(i,j,krhs)) !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & cff*((Drhs(i-1,j)+Drhs(i,j))* & & (-tl_ubar(i,j,krhs))+ & & (tl_Drhs(i-1,j)+tl_Drhs(i,j))* & & (CLIMA(ng)%ubarclm(i,j)- & & ubar(i,j,krhs)))+ & # ifdef TL_IOMS & cff*(Drhs(i-1,j)+Drhs(i,j))* & & ubar(i,j,krhs) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i,j-1)+ & & CLIMA(ng)%M2nudgcof(i,j ))* & & om_v(i,j)*on_v(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)+ & !> & cff*(Drhs(i,j-1)+Drhs(i,j))* & !> & (CLIMA(ng)%vbarclm(i,j)- & !> & vbar(i,j,krhs)) !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & cff*((Drhs(i,j-1)+Drhs(i,j))* & & (-tl_vbar(i,j,krhs))+ & & (tl_Drhs(i,j-1)+tl_Drhs(i,j))* & & (CLIMA(ng)%vbarclm(i,j)- & & vbar(i,j,krhs)))+ & # ifdef TL_IOMS & cff*(Drhs(i,j-1)+Drhs(i,j))* & & vbar(i,j,krhs) # endif END DO END DO END IF # ifdef SOLVE3D ! !----------------------------------------------------------------------- ! Coupling between 2D and 3D equations. !----------------------------------------------------------------------- ! ! Before the predictor step of the first barotropic time-step, ! arrays "rufrc" and "rvfrc" contain the vertical integrals of ! the 3D right-hand-side terms for momentum equations (including ! surface and bottom stresses, if so prescribed). ! ! Convert them into forcing terms by subtracting the fast time ! "rhs_ubar" and "rhs_vbar" from them; Also, immediately apply ! these forcing terms "rhs_ubar" and "rhs_vbar". ! ! From now on, these newly computed forcing terms will remain ! constant during the fast time stepping and will added to ! "rhs_ubar" and "rhs_vbar" during all subsequent time steps. ! IF (FIRST_2D_STEP.and.PREDICTOR_2D_STEP(ng)) THEN IF (iic(ng).eq.ntfirst(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend !> rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) !> tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)+rufrc(i,j) !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_rufrc(i,j) !> ru(i,j,0,nstp)=rufrc(i,j) !> tl_ru(i,j,0,nstp)=tl_rufrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & DiaRUfrc(i,j,3,idiag) !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! END DO !! DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) !> tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)+rvfrc(i,j) !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_rvfrc(i,j) !> rv(i,j,0,nstp)=rvfrc(i,j) !> tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & DiaRVfrc(i,j,3,idiag) !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! END DO !! DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # endif END DO END DO ELSE IF (iic(ng).eq.(ntfirst(ng)+1)) THEN DO j=Jstr,Jend DO i=IstrU,Iend !> rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) !> tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)+ & !> & 1.5_r8*rufrc(i,j)-0.5_r8*ru(i,j,0,nnew) !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & 1.5_r8*tl_rufrc(i,j)- & & 0.5_r8*tl_ru(i,j,0,nnew) !> ru(i,j,0,nstp)=rufrc(i,j) !> tl_ru(i,j,0,nstp)=tl_rufrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & 1.5_r8*DiaRUfrc(i,j,3,idiag)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,idiag) !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! END DO !! DiaU2rhs(i,j,M2sstr)=1.5_r8*DiaRUfrc(i,j,3,M2sstr)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,M2sstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2bstr)=1.5_r8*DiaRUfrc(i,j,3,M2bstr)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,M2bstr) !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) !> tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)+ & !> & 1.5_r8*rvfrc(i,j)-0.5_r8*rv(i,j,0,nnew) !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & 1.5_r8*tl_rvfrc(i,j)- & & 0.5_r8*tl_rv(i,j,0,nnew) !> rv(i,j,0,nstp)=rvfrc(i,j) !> tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & 1.5_r8*DiaRVfrc(i,j,3,idiag)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,idiag) !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! END DO !! DiaV2rhs(i,j,M2sstr)=1.5_r8*DiaRVfrc(i,j,3,M2sstr)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,M2sstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2bstr)=1.5_r8*DiaRVfrc(i,j,3,M2bstr)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,M2bstr) !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # endif END DO END DO ELSE cff1=23.0_r8/12.0_r8 cff2=16.0_r8/12.0_r8 cff3= 5.0_r8/12.0_r8 DO j=Jstr,Jend DO i=IstrU,Iend !> rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) !> tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)+ & !> & cff1*rufrc(i,j)- & !> & cff2*ru(i,j,0,nnew)+ & !> & cff3*ru(i,j,0,nstp) !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & & cff1*tl_rufrc(i,j)- & & cff2*tl_ru(i,j,0,nnew)+ & & cff3*tl_ru(i,j,0,nstp) !> ru(i,j,0,nstp)=rufrc(i,j) !> tl_ru(i,j,0,nstp)=tl_rufrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & cff1*DiaRUfrc(i,j,3,idiag)- & !! & cff2*DiaRUfrc(i,j,nnew,idiag)+ & !! & cff3*DiaRUfrc(i,j,nstp,idiag) !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! END DO !! DiaU2rhs(i,j,M2sstr)=cff1*DiaRUfrc(i,j,3,M2sstr)- & !! & cff2*DiaRUfrc(i,j,nnew,M2sstr)+ & !! & cff3*DiaRUfrc(i,j,nstp,M2sstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2bstr)=cff1*DiaRUfrc(i,j,3,M2bstr)- & !! & cff2*DiaRUfrc(i,j,nnew,M2bstr)+ & !! & cff3*DiaRUfrc(i,j,nstp,M2bstr) !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) !> tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)+ & !> & cff1*rvfrc(i,j)- & !> & cff2*rv(i,j,0,nnew)+ & !> & cff3*rv(i,j,0,nstp) !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & & cff1*tl_rvfrc(i,j)- & & cff2*tl_rv(i,j,0,nnew)+ & & cff3*tl_rv(i,j,0,nstp) !> rv(i,j,0,nstp)=rvfrc(i,j) !> tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & cff1*DiaRVfrc(i,j,3,idiag)- & !! & cff2*DiaRVfrc(i,j,nnew,idiag)+ & !! & cff3*DiaRVfrc(i,j,nstp,idiag) !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! END DO !! DiaV2rhs(i,j,M2sstr)=cff1*DiaRVfrc(i,j,3,M2sstr)- & !! & cff2*DiaRVfrc(i,j,nnew,M2sstr)+ & !! & cff3*DiaRVfrc(i,j,nstp,M2sstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2bstr)=cff1*DiaRVfrc(i,j,3,M2bstr)- & !! & cff2*DiaRVfrc(i,j,nnew,M2bstr)+ & !! & cff3*DiaRVfrc(i,j,nstp,M2bstr) !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # endif END DO END DO END IF ELSE DO j=Jstr,Jend DO i=IstrU,Iend !> rhs_ubar(i,j)=rhs_ubar(i,j)+rufrc(i,j) !> tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_rufrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & DiaRUfrc(i,j,3,idiag) !! END DO !! DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> rhs_vbar(i,j)=rhs_vbar(i,j)+rvfrc(i,j) !> tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_rvfrc(i,j) # ifdef DIAGNOSTICS_UV !! DO idiag=1,M2pgrd !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & DiaRVfrc(i,j,3,idiag) !! END DO !! DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # endif END DO END DO END IF # else !> !>---------------------------------------------------------------------- !> Add in surface momentum stress. !>---------------------------------------------------------------------- !> !> DO j=Jstr,Jend !> DO i=IstrU,Iend !> fac=sustr(i,j)*om_u(i,j)*on_u(i,j) !> rhs_ubar(i,j)=rhs_ubar(i,j)+fac # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2sstr)=fac # endif !> END DO !> END DO !> DO j=JstrV,Jend !> DO i=Istr,Iend !> fac=svstr(i,j)*om_v(i,j)*on_v(i,j) !> rhs_vbar(i,j)=rhs_vbar(i,j)+fac # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2sstr)=fac # endif !> END DO !> END DO !> # ifdef TL_IOMS DO j=Jstr,Jend DO i=IstrU,Iend !> fac=sustr(i,j)*om_u(i,j)*on_u(i,j) !> fac=tl_sustr(i,j)*om_u(i,j)*on_u(i,j) tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> fac=svstr(i,j)*om_v(i,j)*on_v(i,j) !> fac=tl_svstr(i,j)*om_v(i,j)*on_v(i,j) tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+fac END DO END DO # endif # endif ! !======================================================================= ! Time step 2D momentum equations. !======================================================================= ! ! Compute total water column depth. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend Dstp(i,j)=zeta(i,j,kstp)+h(i,j) tl_Dstp(i,j)=tl_zeta(i,j,kstp)+tl_h(i,j) END DO END DO ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. # ifdef WET_DRY_NOT_YET ! HGA: We need to think more about TLM of the wet/dry mask arrays ! since they are time-dependent. # endif ! IF (FIRST_2D_STEP) THEN cff1=0.5_r8*dtfast(ng) # ifdef WET_DRY_NOT_YET cff2=1.0_r8/cff1 # endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> ubar(i,j,knew)=(ubar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i-1,j))+ & !> & cff*cff1*rhs_ubar(i,j))*fac !> tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & & cff*cff1*tl_rhs_ubar(i,j))*fac+ & & (ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*fac # endif # ifdef MASKING !> ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) !> tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !> cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> ubar(i,j,knew)=ubar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=cff2/cff !> rhs_ubar(i,j)=(ubar(i,j,knew)*(Dnew(i,j)+Dnew(i-1,j))- & !> & ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j)))* & !> & fac1 !> tl_rhs_ubar(i,j)=(tl_ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))+ & & ubar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & & tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))- & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1- & # ifdef TL_IOMS & (ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))- & & ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j)))*fac1 # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> vbar(i,j,knew)=(vbar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i,j-1))+ & !> & cff*cff1*rhs_vbar(i,j))*fac !> tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & & cff*cff1*tl_rhs_vbar(i,j))*fac+ & & (vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*fac # endif # ifdef MASKING !> vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) !> tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !> cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> vbar(i,j,knew)=vbar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=cff2/cff !> rhs_vbar(i,j)=(vbar(i,j,knew)*(Dnew(i,j)+Dnew(i,j-1))- & !> & vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1)))* & !> & fac1 !> tl_rhs_vbar(i,j)=(tl_vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))+ & & vbar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & & tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))- & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1- & # ifdef TL_IOMS & (vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))- & & vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1)))*fac1 # endif # endif END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=dtfast(ng) # ifdef WET_DRY_NOT_YET cff2=1.0_r8/cff1 # endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> ubar(i,j,knew)=(ubar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i-1,j))+ & !> & cff*cff1*rhs_ubar(i,j))*fac !> tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & & cff*cff1*tl_rhs_ubar(i,j))*fac+ & & (ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*fac # endif # ifdef MASKING !> ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) !> tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !> cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> ubar(i,j,knew)=ubar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=cff2/cff !> rhs_ubar(i,j)=(ubar(i,j,knew)*(Dnew(i,j)+Dnew(i-1,j))- & !> & ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j)))* & !> & fac1 !> tl_rhs_ubar(i,j)=(tl_ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))+ & & ubar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & & tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))- & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1- & # ifdef TL_IOMS & (ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))- & & ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j)))*fac1 # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> vbar(i,j,knew)=(vbar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i,j-1))+ & !> & cff*cff1*rhs_vbar(i,j))*fac !> tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & & cff*cff1*tl_rhs_vbar(i,j))*fac+ & & (vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*fac # endif # ifdef MASKING !> vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) !> tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !> cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> vbar(i,j,knew)=vbar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=cff2/cff !> rhs_vbar(i,j)=(vbar(i,j,knew)*(Dnew(i,j)+Dnew(i,j-1))- & !> & vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1)))* & !> & fac1 !> tl_rhs_vbar(i,j)=(tl_vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))+ & & vbar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & & tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))- & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1- & # ifdef TL_IOMS & (vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))- & & vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1)))*fac1 # endif # endif END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 # ifdef WET_DRY_NOT_YET cff4=1.0_r8/cff1 # endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> ubar(i,j,knew)=(ubar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i-1,j))+ & !> & cff*(cff1*rhs_ubar(i,j)+ & !> & cff2*rubar(i,j,kstp)- & !> & cff3*rubar(i,j,ptsk)))*fac !> tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & & cff*(cff1*tl_rhs_ubar(i,j)+ & & cff2*tl_rubar(i,j,kstp)- & & cff3*tl_rubar(i,j,ptsk)))*fac+ & & (ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*(cff1*rhs_ubar(i,j)+ & & cff2*rubar(i,j,kstp)- & & cff3*rubar(i,j,ptsk)))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*(cff1*rhs_ubar(i,j)+ & & cff2*rubar(i,j,kstp)- & & cff3*rubar(i,j,ptsk)))*fac # endif # ifdef MASKING !> ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) !> tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !> cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> ubar(i,j,knew)=ubar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=1.0_r8/cff !> rhs_ubar(i,j)=((ubar(i,j,knew)*(Dnew(i,j)+Dnew(i-1,j))- & !> & ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j)))* & !> & fac1- & !> & cff2*rubar(i,j,kstp)+ & !> & cff3*rubar(i,j,ptsk))*cff4 !> tl_rhs_ubar(i,j)=((tl_ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))+ & & ubar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & & tl_ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))- & & ubar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1- & & cff2*tl_rubar(i,j,kstp)+ & & cff3*tl_rubar(i,j,ptsk))*cff4- & # ifdef TL_IOMS & (ubar(i,j,knew)* & & (Dnew(i,j)+Dnew(i-1,j))- & & ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j)))*fac1*cff4 # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1))+ & # ifdef TL_IOMS & 2.0_r8*fac # endif !> vbar(i,j,knew)=(vbar(i,j,kstp)* & !> & (Dstp(i,j)+Dstp(i,j-1))+ & !> & cff*(cff1*rhs_vbar(i,j)+ & !> & cff2*rvbar(i,j,kstp)- & !> & cff3*rvbar(i,j,ptsk)))*fac !> tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & & cff*(cff1*tl_rhs_vbar(i,j)+ & & cff2*tl_rvbar(i,j,kstp)- & & cff3*tl_rvbar(i,j,ptsk)))*fac+ & & (vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*(cff1*rhs_vbar(i,j)+ & & cff2*rvbar(i,j,kstp)- & & cff3*rvbar(i,j,ptsk)))*tl_fac- & # ifdef TL_IOMS & (2.0_r8*vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*(cff1*rhs_vbar(i,j)+ & & cff2*rvbar(i,j,kstp)- & & cff3*rvbar(i,j,ptsk)))*fac # endif # ifdef MASKING !> vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) !> tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) # endif # ifdef WET_DRY_NOT_YET !> cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !> cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !> cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !> vbar(i,j,knew)=vbar(i,j,knew)*cff7 !> !> HGA: TLM code needed here. !> fac1=1.0_r8/cff !> rhs_vbar(i,j)=((vbar(i,j,knew)*(Dnew(i,j)+Dnew(i,j-1))- & !> & vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1)))* & !> & fac1- & !> & cff2*rvbar(i,j,kstp)+ & !> & cff3*rvbar(i,j,ptsk))*cff4 !> tl_rhs_vbar(i,j)=((tl_vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))+ & & vbar(i,j,knew)* & & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & & tl_vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))- & & vbar(i,j,kstp)* & & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1- & & cff2*tl_rvbar(i,j,kstp)+ & & cff3*tl_rvbar(i,j,ptsk))*cff4- & # ifdef TL_IOMS & (vbar(i,j,knew)* & & (Dnew(i,j)+Dnew(i,j-1))- & & vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1)))*fac1*cff4 # endif # endif END DO END DO END IF # ifdef DIAGNOSTICS_UV !! !!----------------------------------------------------------------------- !! Time step 2D momentum diagnostic terms. !!----------------------------------------------------------------------- # ifdef MASKING !! !! Apply land/sea mask. !! !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)*umask(i,j) !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)*vmask(i,j) !! END DO !! END DO !! END DO # endif # ifdef SOLVE3D !! !! The arrays "DiaU2rhs" and "DiaV2rhs" contain the contributions of !! each of the 2D right-hand-side terms for the momentum equations. !! !! These values are integrated, time-stepped and converted to mass flux !! units (m3 s-1) for coupling with the 3D diagnostic terms. !! !! fac=weight(1,iif(ng),ng) !! IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng) !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2int(i,j,idiag)=cff1*DiaU2rhs(i,j,idiag) !! DiaU2wrk(i,j,idiag)=DiaU2int(i,j,idiag)* & !! & (pm(i-1,j)+pm(i,j))*fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2int(i,j,idiag)=cff1*DiaV2rhs(i,j,idiag) !! DiaV2wrk(i,j,idiag)=DiaV2int(i,j,idiag)* & !! & (pn(i,j)+pn(i,j-1))*fac !! END DO !! END DO !! END DO !! ELSE IF (CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 !! cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 !! cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2int(i,j,idiag)=DiaU2int(i,j,idiag)+ & !! & (cff1*DiaU2rhs(i,j,idiag)+ & !! & cff2*DiaRUbar(i,j,kstp,idiag)- & !! & cff3*DiaRUbar(i,j,ptsk,idiag)) !! DiaU2wrk(i,j,idiag)=DiaU2wrk(i,j,idiag)+ & !! & DiaU2int(i,j,idiag)* & !! & (pm(i-1,j)+pm(i,j))*fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2int(i,j,idiag)=DiaV2int(i,j,idiag)+ & !! & (cff1*DiaV2rhs(i,j,idiag)+ & !! & cff2*DiaRVbar(i,j,kstp,idiag)- & !! & cff3*DiaRVbar(i,j,ptsk,idiag)) !! DiaV2wrk(i,j,idiag)=DiaV2wrk(i,j,idiag)+ & !! & DiaV2int(i,j,idiag)* & !! & (pn(i,j)+pn(i,j-1))*fac !! END DO !! END DO !! END DO !! END IF # else !! !! Time-step the diagnostic terms. !! !! IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng) !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! DiaU2wrk(i,j,idiag)=cff*cff1*DiaU2rhs(i,j,idiag)*fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! DiaV2wrk(i,j,idiag)=cff*cff1*DiaV2rhs(i,j,idiag)*fac !! END DO !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)-ubar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i-1,j))*fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)-vbar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i,j-1))*fac !! END DO !! END DO !! ELSE IF (CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 !! cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 !! cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! DiaU2wrk(i,j,idiag)=cff*(cff1*DiaU2rhs(i,j,idiag)+ & !! & cff2*DiaRUbar(i,j,kstp,idiag)- & !! & cff3*DiaRUbar(i,j,ptsk,idiag))* & !! & fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! DiaV2wrk(i,j,idiag)=cff*(cff1*DiaV2rhs(i,j,idiag)+ & !! & cff2*DiaRVbar(i,j,kstp,idiag)- & !! & cff3*DiaRVbar(i,j,ptsk,idiag))* !! & fac !! END DO !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)- & !! & ubar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i-1,j))*fac !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)- & !! & vbar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i,j-1))*fac !! END DO !! END DO !! END IF # endif # endif ! ! If predictor step, load right-side-term into shared arrays for ! future use during the subsequent corrector step. ! IF (PREDICTOR_2D_STEP(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend !> rubar(i,j,krhs)=rhs_ubar(i,j) !> tl_rubar(i,j,krhs)=tl_rhs_ubar(i,j) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend !> rvbar(i,j,krhs)=rhs_vbar(i,j) !> tl_rvbar(i,j,krhs)=tl_rhs_vbar(i,j) END DO END DO # ifdef DIAGNOSTICS_UV !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaRUbar(i,j,krhs,idiag)=DiaU2rhs(i,j,idiag) !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaRVbar(i,j,krhs,idiag)=DiaV2rhs(i,j,idiag) !! END DO !! END DO !! END DO # endif END IF ! !----------------------------------------------------------------------- ! Apply lateral boundary conditions. !----------------------------------------------------------------------- ! !> CALL u2dbc_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & IminS, ImaxS, JminS, JmaxS, & !> & krhs, kstp, knew, & !> & ubar, vbar, zeta) !> CALL rp_u2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta, & & tl_ubar, tl_vbar, tl_zeta) !> CALL v2dbc_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & IminS, ImaxS, JminS, JmaxS, & !> & krhs, kstp, knew, & !> & ubar, vbar, zeta) !> CALL rp_v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta, & & tl_ubar, tl_vbar, tl_zeta) ! ! Compute integral mass flux across open boundaries and adjust ! for volume conservation. ! IF (ANY(tl_VolCons(:,ng))) THEN CALL rp_obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & knew, & # ifdef MASKING & umask, vmask, & # endif & h, tl_h, om_v, on_u, & & ubar, vbar, zeta, & & tl_ubar, tl_vbar, tl_zeta) END IF ! !----------------------------------------------------------------------- ! Apply momentum transport point sources (like river runoff), if any. !----------------------------------------------------------------------- ! IF (LuvSrc(ng)) THEN DO is=1,Nsrc(ng) i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN IF (INT(SOURCES(ng)%Dsrc(is)).eq.0) THEN cff=1.0_r8/(on_u(i,j)* & & 0.5_r8*(zeta(i-1,j,knew)+h(i-1,j)+ & & zeta(i ,j,knew)+h(i ,j))) tl_cff=-cff*cff*on_u(i,j)* & & 0.5_r8*(tl_zeta(i-1,j,knew)+tl_h(i-1,j)+ & & tl_zeta(i ,j,knew)+tl_h(i ,j))+ & # ifdef TL_IOMS & 2.0_r8*cff # endif !> ubar(i,j,knew)=SOURCES(ng)%Qbar(is)*cff !> tl_ubar(i,j,knew)=SOURCES(ng)%Qbar(is)*tl_cff ELSE cff=1.0_r8/(om_v(i,j)* & & 0.5_r8*(zeta(i,j-1,knew)+h(i,j-1)+ & & zeta(i,j ,knew)+h(i,j ))) tl_cff=-cff*cff*om_v(i,j)* & & 0.5_r8*(tl_zeta(i,j-1,knew)+tl_h(i,j-1)+ & & tl_zeta(i,j ,knew)+tl_h(i,j ))+ & # ifdef TL_IOMS & 2.0_r8*cff # endif !> vbar(i,j,knew)=SOURCES(ng)%Qbar(is)*cff !> tl_vbar(i,j,knew)=SOURCES(ng)%Qbar(is)*tl_cff END IF END IF END DO END IF ! !----------------------------------------------------------------------- ! Exchange boundary information. !----------------------------------------------------------------------- ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !> CALL exchange_u2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & ubar(:,:,knew)) !> CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_ubar(:,:,knew)) !> CALL exchange_v2d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & vbar(:,:,knew)) !> CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_vbar(:,:,knew)) END IF # ifdef DISTRIBUTE !> CALL mp_exchange2d (ng, tile, iNLM, 2, & !> & LBi, UBi, LBj, UBj, & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & ubar(:,:,knew), & !> & vbar(:,:,knew)) !> CALL mp_exchange2d (ng, tile, iRPM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_ubar(:,:,knew), & & tl_vbar(:,:,knew)) # endif RETURN END SUBROUTINE rp_step2d_tile #else SUBROUTINE rp_step2d END SUBROUTINE rp_step2d #endif