#include "cppdefs.h" MODULE rp_step3d_t_mod #if !defined TS_FIXED && (defined TL_IOMS && defined SOLVE3D) ! !svn $Id: rp_step3d_t.F 889 2018-02-10 03:32:52Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2019 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine time-steps representers tangent linear tracer ! ! equations. Notice that advective and diffusive terms are ! ! time-stepped differently. It applies the corrector time-step ! ! for horizontal/vertical advection, vertical diffusion, nudging ! ! if necessary, and lateral boundary conditions. ! ! ! ! Notice that at input the tracer arrays have: ! ! ! ! t(:,:,:,nnew,:) m Tunits n+1 horizontal/vertical diffusion ! ! terms plus source/sink terms ! ! (biology, sediment), if any ! ! ! ! t(:,:,:,3 ,:) Tunits n+1/2 advective terms and vertical ! ! diffusion predictor step ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: rp_step3d_t ! CONTAINS ! !*********************************************************************** SUBROUTINE rp_step3d_t (ng, tile) !*********************************************************************** ! USE mod_param # ifdef DIAGNOSTICS_TS !! USE mod_diags # endif USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, iRPM, 35, __LINE__, __FILE__) # endif CALL rp_step3d_t_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & # ifdef MASKING & GRID(ng) % rmask, & & GRID(ng) % umask, & & GRID(ng) % vmask, & # endif # ifdef TS_MPDATA_NOT_YET # ifdef WET_DRY & GRID(ng) % rmask_wet, & & GRID(ng) % umask_wet, & & GRID(ng) % vmask_wet, & # endif & GRID(ng) % omn, & & GRID(ng) % om_u, & & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % on_v, & # endif & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % Hz, & & GRID(ng) % tl_Hz, & & GRID(ng) % Huon, & & GRID(ng) % tl_Huon, & & GRID(ng) % Hvom, & & GRID(ng) % tl_Hvom, & & GRID(ng) % z_r, & & GRID(ng) % tl_z_r, & & MIXING(ng) % Akt, & & MIXING(ng) % tl_Akt, & & OCEAN(ng) % W, & & OCEAN(ng) % tl_W, & # if defined FLOATS_NOT_YET && defined FLOAT_VWALK & MIXING(ng) % dAktdz, & # endif # ifdef DIAGNOSTICS_TS !! & DIAGS(ng) % DiaTwrk, & # endif & OCEAN(ng) % t, & & OCEAN(ng) % tl_t) # ifdef PROFILE CALL wclock_off (ng, iRPM, 35, __LINE__, __FILE__) # endif RETURN END SUBROUTINE rp_step3d_t ! !*********************************************************************** SUBROUTINE rp_step3d_t_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & # ifdef MASKING & rmask, umask, vmask, & # endif # ifdef TS_MPDATA_NOT_YET # ifdef WET_DRY & rmask_wet, umask_wet, vmask_wet, & # endif & omn, om_u, om_v, on_u, on_v, & # endif & pm, pn, & & Hz, tl_Hz, & & Huon, tl_Huon, & & Hvom, tl_Hvom, & & z_r, tl_z_r, & & Akt, tl_Akt, & & W, tl_W, & # if defined FLOATS_NOT_YET && defined FLOAT_VWALK & dAktdz, & # endif # ifdef DIAGNOSTICS_TS !! & DiaTwrk, & # endif & t, tl_t) !*********************************************************************** ! USE mod_param USE mod_clima USE mod_ncparam USE mod_scalars USE mod_sources ! USE exchange_3d_mod, ONLY : exchange_r3d_tile # ifdef DISTRIBUTE # if defined FLOATS_NOT_YET && defined FLOAT_VWALK USE mp_exchange_mod, ONLY : mp_exchange3d # endif USE mp_exchange_mod, ONLY : mp_exchange4d # endif # ifdef TS_MPDATA_NOT_YET !! USE rp_mpdata_adiff_mod # endif USE rp_t3dbc_mod, ONLY : rp_t3dbc_tile ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew ! # ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: rmask(LBi:,LBj:) real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif # ifdef TS_MPDATA_NOT_YET # ifdef WET_DRY real(r8), intent(in) :: rmask_wet(LBi:,LBj:) real(r8), intent(in) :: umask_wet(LBi:,LBj:) real(r8), intent(in) :: vmask_wet(LBi:,LBj:) # endif real(r8), intent(in) :: omn(LBi:,LBj:) real(r8), intent(in) :: om_u(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: on_v(LBi:,LBj:) # endif real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: Huon(LBi:,LBj:,:) real(r8), intent(in) :: Hvom(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) # ifdef SUN real(r8), intent(in) :: Akt(LBi:UBi,LBj:UBj,0:N(ng),NAT) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # else real(r8), intent(in) :: Akt(LBi:,LBj:,0:,:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # endif real(r8), intent(in) :: W(LBi:,LBj:,0:) real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) real(r8), intent(in) :: tl_Huon(LBi:,LBj:,:) real(r8), intent(in) :: tl_Hvom(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) # ifdef SUN real(r8), intent(in) :: tl_Akt(LBi:UBi,LBj:UBj,0:N(ng),NAT) # else real(r8), intent(in) :: tl_Akt(LBi:,LBj:,0:,:) # endif real(r8), intent(in) :: tl_W(LBi:,LBj:,0:) # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:,LBj:,:,:,:) # endif # ifdef SUN real(r8), intent(inout) :: tl_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # else real(r8), intent(inout) :: tl_t(LBi:,LBj:,:,:,:) # endif # if defined FLOATS_NOT_YET && defined FLOAT_VWALK real(r8), intent(out) :: dAktdz(LBi:,LBj:,:) # endif # else # ifdef MASKING real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif # ifdef TS_MPDATA_NOT_YET # ifdef WET_DRY real(r8), intent(in) :: rmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask_wet(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: omn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_v(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: Huon(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: Hvom(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: Akt(LBi:UBi,LBj:UBj,0:N(ng),NAT) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) real(r8), intent(in) :: W(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_Huon(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_Hvom(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_Akt(LBi:UBi,LBj:UBj,0:N(ng),NAT) real(r8), intent(in) :: tl_W(LBi:UBi,LBj:UBj,0:N(ng)) # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:UBi,LBj:UBj,N(ng),NT(ng), & !! & NDT) # endif real(r8), intent(inout) :: tl_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # if defined FLOATS_NOT_YET && defined FLOAT_VWALK real(r8), intent(out) :: dAktdz(LBi:UBi,LBj:UBj,N(ng)) # endif # endif ! ! Local variable declarations. ! integer :: Isrc, Jsrc integer :: i, ic, is, itrc, j, k, ltrc # if defined AGE_MEAN && defined T_PASSIVE integer :: iage # endif # ifdef DIAGNOSTICS_TS integer :: idiag # endif real(r8), parameter :: eps = 1.0E-16_r8 real(r8) :: cff, cff1, cff2, cff3 real(r8) :: tl_cff, tl_cff1, tl_cff2, tl_cff3 real(r8), dimension(IminS:ImaxS,0:N(ng)) :: CF real(r8), dimension(IminS:ImaxS,0:N(ng)) :: BC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: DC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: FC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_CF real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_BC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_DC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_FC real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: curv real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_curv real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: oHz real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: tl_oHz # ifdef TS_MPDATA_NOT_YET # ifdef DIAGNOSTICS_TS !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS,3) :: Dhadv !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng),NT(ng)) :: Dvadv # endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS, & & N(ng),NT(ng)) :: Ta real(r8), dimension(IminS:ImaxS,JminS:JmaxS, & & N(ng),NT(ng)) :: tl_Ta real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: Ua real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: Va real(r8), dimension(IminS:ImaxS,JminS:JmaxS,0:N(ng)) :: Wa real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: tl_Ua real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: tl_Va real(r8), dimension(IminS:ImaxS,JminS:JmaxS,0:N(ng)) :: tl_Wa # endif # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Time-step horizontal advection term. !----------------------------------------------------------------------- ! ! Compute inverse thickness. ! # ifdef TS_MPDATA_NOT_YET # define I_RANGE Istrm2,Iendp2 # define J_RANGE Jstrm2,Jendp2 # else # define I_RANGE Istr,Iend # define J_RANGE Jstr,Jend # endif DO k=1,N(ng) DO j=J_RANGE DO i=I_RANGE oHz(i,j,k)=1.0_r8/Hz(i,j,k) tl_oHz(i,j,k)=-oHz(i,j,k)*oHz(i,j,k)*tl_Hz(i,j,k)+ & # ifdef TL_IOMS & 2.0_r8*oHz(i,j,k) # endif END DO END DO END DO # undef I_RANGE # undef J_RANGE # ifdef TS_MPDATA_NOT_YET ! ! The MPDATA algorithm requires a three-point footprint, so exchange ! boundary data on t(:,:,:,nnew,:) so other processes computed earlier ! (horizontal diffusion, biology, or sediment) are accounted. ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN DO itrc=1,NT(ng) !> CALL exchange_r3d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, 1, N(ng), & !> & t(:,:,:,nnew,itrc)) !> CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_t(:,:,:,nnew,itrc)) END DO END IF # ifdef DISTRIBUTE !> CALL mp_exchange4d (ng, tile, iNLM, 1, & !> & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & t(:,:,:,nnew,:)) !> CALL mp_exchange4d (ng, tile, iRPM, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_t(:,:,:,nnew,:)) # endif # endif ! ! Compute tangent linear horizontal tracer advection fluxes. ! T_LOOP : DO itrc=1,NT(ng) K_LOOP : DO k=1,N(ng) # if defined TS_C2HADVECTION_TL ! ! Second-order, centered differences horizontal advective fluxes. ! DO j=Jstr,Jend DO i=Istr,Iend+1 FX(i,j)=Huon(i,j,k)* & & 0.5_r8*(t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc)) tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)*(t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc))+ & & Huon(i,j,k)*(tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc)))- & # ifdef TL_IOMS & FX(i,j) # endif END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend FE(i,j)=Hvom(i,j,k)* & & 0.5_r8*(t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc)) tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)*(t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc))+ & & Hvom(i,j,k)*(tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc)))- & # ifdef TL_IOMS & FE(i,j) # endif END DO END DO # elif defined TS_MPDATA_NOT_YET ! ! First-order, upstream differences horizontal advective fluxes. ! DO j=JstrVm2,Jendp2i DO i=IstrUm2,Iendp3 cff1=MAX(Huon(i,j,k),0.0_r8) cff2=MIN(Huon(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, Huon(i,j,k)))*tl_Huon(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5_r8,-Huon(i,j,k)))*tl_Huon(i,j,k) FX(i,j)=cff1*t(i-1,j,k,3,itrc)+ & & cff2*t(i ,j,k,3,itrc) tl_FX(i,j)=tl_cff1*t(i-1,j,k,3,itrc)+ & & cff1*tl_t(i-1,j,k,3,itrc)+ & & tl_cff2*t(i ,j,k,3,itrc)+ & & cff2*tl_t(i ,j,k,3,itrc)- & # ifdef TL_IOMS & FX(i,j) # endif END DO END DO DO j=JstrVm2,Jendp3 DO i=IstrUm2,Iendp2i cff1=MAX(Hvom(i,j,k),0.0_r8) cff2=MIN(Hvom(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, Hvom(i,j,k)))*tl_Hvom(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5_r8,-Hvom(i,j,k)))*tl_Hvom(i,j,k) FE(i,j)=cff1*t(i,j-1,k,3,itrc)+ & & cff2*t(i,j ,k,3,itrc) tl_FE(i,j)=tl_cff1*t(i,j-1,k,3,itrc)+ & & cff1*tl_t(i,j-1,k,3,itrc)+ & & tl_cff2*t(i,j ,k,3,itrc)+ & & cff2*tl_t(i,j ,k,3,itrc)- & # ifdef TL_IOMS & FE(i,j) # endif END DO END DO # else ! # if defined TS_U3HADVECTION_TL ! Third-order, uptream-biased horizontal advective fluxes. # elif defined TS_A4HADVECTION_TL ! Fourth-order, Akima horizontal advective fluxes. # else ! Fourth-order, centered differences horizontal advective fluxes. # endif ! DO j=Jstr,Jend DO i=Istrm1,Iendp2 FX(i,j)=t(i ,j,k,3,itrc)- & & t(i-1,j,k,3,itrc) tl_FX(i,j)=tl_t(i ,j,k,3,itrc)- & & tl_t(i-1,j,k,3,itrc) # ifdef MASKING FX(i,j)=FX(i,j)*umask(i,j) tl_FX(i,j)=tl_FX(i,j)*umask(i,j) # endif END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend FX(Istr-1,j)=FX(Istr,j) tl_FX(Istr-1,j)=tl_FX(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend FX(Iend+2,j)=FX(Iend+1,j) tl_FX(Iend+2,j)=tl_FX(Iend+1,j) END DO END IF END IF ! DO j=Jstr,Jend DO i=Istr-1,Iend+1 # if defined TS_U3HADVECTION_TL curv(i,j)=FX(i+1,j)-FX(i,j) tl_curv(i,j)=tl_FX(i+1,j)-tl_FX(i,j) # elif defined TS_A4HADVECTION_TL cff=2.0_r8*FX(i+1,j)*FX(i,j) tl_cff=2.0_r8*(tl_FX(i+1,j)*FX(i,j)+ & FX(i+1,j)*tl_FX(i,j))- & # ifdef TL_IOMS & cff # endif IF (cff.gt.eps) THEN grad(i,j)=cff/(FX(i+1,j)+FX(i,j)) tl_grad(i,j)=((FX(i+1,j)+FX(i,j))*tl_cff- & & cff*(tl_FX(i+1,j)+tl_FX(i,j)))/ & & ((FX(i+1,j)+FX(i,j))*(FX(i+1,j)+FX(i,j)))+ & # ifdef TL_IOMS & grad(i,j) # endif ELSE grad(i,j)=0.0_r8 tl_grad(i,j)=0.0_r8 END IF # else grad(i,j)=0.5_r8*(FX(i+1,j)+FX(i,j)) tl_grad(i,j)=0.5_r8*(tl_FX(i+1,j)+tl_FX(i,j)) # endif END DO END DO ! cff1=1.0_r8/6.0_r8 cff2=1.0_r8/3.0_r8 DO j=Jstr,Jend DO i=Istr,Iend+1 # ifdef TS_U3HADVECTION_TL FX(i,j)=Huon(i,j,k)*0.5_r8* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc))- & & cff1*(curv(i-1,j)*MAX(Huon(i,j,k),0.0_r8)+ & & curv(i ,j)*MIN(Huon(i,j,k),0.0_r8)) tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc))+ & & Huon(i,j,k)* & & (tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc)))- & & cff1* & & (tl_curv(i-1,j)*MAX(Huon(i,j,k),0.0_r8)+ & & curv(i-1,j)* & & (0.5_r8+SIGN(0.5_r8, Huon(i,j,k)))* & & tl_Huon(i,j,k)+ & & tl_curv(i ,j)*MIN(Huon(i,j,k),0.0_r8)+ & & curv(i ,j)* & & (0.5_r8+SIGN(0.5_r8,-Huon(i,j,k)))* & & tl_Huon(i,j,k))- & # ifdef TL_IOMS & FX(i,j) # endif # else FX(i,j)=Huon(i,j,k)*0.5_r8* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc)- & & cff2*(grad(i ,j)- & & grad(i-1,j))) tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc)- & & cff2*(grad(i ,j)- & & grad(i-1,j)))+ & & Huon(i,j,k)* & & (tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc)- & & cff2*(tl_grad(i ,j)- & & tl_grad(i-1,j))))- & # ifdef TL_IOMS & FX(i,j) # endif # endif END DO END DO ! DO j=Jstrm1,Jendp2 DO i=Istr,Iend FE(i,j)=t(i,j ,k,3,itrc)- & & t(i,j-1,k,3,itrc) tl_FE(i,j)=tl_t(i,j ,k,3,itrc)- & & tl_t(i,j-1,k,3,itrc) # ifdef MASKING FE(i,j)=FE(i,j)*vmask(i,j) tl_FE(i,j)=tl_FE(i,j)*vmask(i,j) # endif END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend FE(i,Jstr-1)=FE(i,Jstr) tl_FE(i,Jstr-1)=tl_FE(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend FE(i,Jend+2)=FE(i,Jend+1) tl_FE(i,Jend+2)=tl_FE(i,Jend+1) END DO END IF END IF ! DO j=Jstr-1,Jend+1 DO i=Istr,Iend # if defined TS_U3HADVECTION_TL curv(i,j)=FE(i,j+1)-FE(i,j) tl_curv(i,j)=tl_FE(i,j+1)-tl_FE(i,j) # elif defined TS_A4HADVECTION_TL cff=2.0_r8*FE(i,j+1)*FE(i,j) tl_cff=2.0_r8*(tl_FE(i,j+1)*FE(i,j)+ & & FE(i,j+1)*tl_FE(i,j))- & # ifdef TL_IOMS & cff # endif IF (cff.gt.eps) THEN grad(i,j)=cff/(FE(i,j+1)+FE(i,j)) tl_grad(i,j)=((FE(i,j+1)+FE(i,j))*tl_cff- & & cff*(tl_FE(i,j+1)+tl_FE(i,j)))/ & & ((FE(i,j+1)+FE(i,j))*(FE(i,j+1)+FE(i,j)))+ & # ifdef TL_IOMS & grad(i,j) # endif ELSE grad(i,j)=0.0_r8 tl_grad(i,j)=0.0_r8 END IF # else grad(i,j)=0.5_r8*(FE(i,j+1)+FE(i,j)) tl_grad(i,j)=0.5_r8*(tl_FE(i,j+1)+tl_FE(i,j)) # endif END DO END DO ! cff1=1.0_r8/6.0_r8 cff2=1.0_r8/3.0_r8 DO j=Jstr,Jend+1 DO i=Istr,Iend # ifdef TS_U3HADVECTION_TL FE(i,j)=Hvom(i,j,k)*0.5_r8* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc))- & & cff1*(curv(i,j-1)*MAX(Hvom(i,j,k),0.0_r8)+ & & curv(i,j )*MIN(Hvom(i,j,k),0.0_r8)) tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc))+ & & Hvom(i,j,k)* & & (tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc)))- & & cff1* & & (tl_curv(i,j-1)*MAX(Hvom(i,j,k),0.0_r8)+ & & curv(i,j-1)* & & (0.5_r8+SIGN(0.5_r8, Hvom(i,j,k)))* & & tl_Hvom(i,j,k)+ & & tl_curv(i,j )*MIN(Hvom(i,j,k),0.0_r8)+ & & curv(i,j )* & & (0.5_r8+SIGN(0.5_r8,-Hvom(i,j,k)))* & & tl_Hvom(i,j,k))- & # ifdef TL_IOMS & FE(i,j) # endif # else FE(i,j)=Hvom(i,j,k)*0.5_r8* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc)- & & cff2*(grad(i,j )- & & grad(i,j-1))) tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc)- & & cff2*(grad(i,j )- & & grad(i,j-1)))+ & & Hvom(i,j,k)* & & (tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc)- & & cff2*(tl_grad(i,j )- & & tl_grad(i,j-1))))- & # ifdef TL_IOMS & FE(i,j) # endif # endif END DO END DO # endif ! ! Apply tracers point sources to the horizontal advection terms, ! if any. ! IF (LuvSrc(ng).and.ANY(LtracerSrc(:,ng))) THEN DO is=1,Nsrc(ng) Isrc=SOURCES(ng)%Isrc(is) Jsrc=SOURCES(ng)%Jsrc(is) IF (INT(SOURCES(ng)%Dsrc(is)).eq.0) THEN # ifdef TS_MPDATA_NOT_YET IF (((IstrUm2.le.Isrc).and.(Isrc.le.Iendp3)).and. & & ((JstrVm2.le.Jsrc).and.(Jsrc.le.Jendp2i))) THEN # else IF (((Istr.le.Isrc).and.(Isrc.le.Iend+1)).and. & & ((Jstr.le.Jsrc).and.(Jsrc.le.Jend))) THEN # endif IF (LtracerSrc(itrc,ng)) THEN !> FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & !> & SOURCES(ng)%Tsrc(is,k,itrc) !> tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & SOURCES(ng)%Tsrc(is,k,itrc) # ifdef MASKING ELSE IF ((rmask(Isrc ,Jsrc).eq.0.0_r8).and. & & (rmask(Isrc-1,Jsrc).eq.1.0_r8)) THEN FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & & t(Isrc-1,Jsrc,k,3,itrc) tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & t(Isrc-1,Jsrc,k,3,itrc)+ & & Huon(Isrc,Jsrc,k)* & & tl_t(Isrc-1,Jsrc,k,3,itrc)- & # ifdef TL_IOMS & FX(Isrc,Jsrc) # endif ELSE IF ((rmask(Isrc ,Jsrc).eq.1.0_r8).and. & & (rmask(Isrc-1,Jsrc).eq.0.0_r8)) THEN FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & & t(Isrc ,Jsrc,k,3,itrc) tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & t(Isrc ,Jsrc,k,3,itrc)+ & & Huon(Isrc,Jsrc,k)* & & tl_t(Isrc ,Jsrc,k,3,itrc)- & # ifdef TL_IOMS & FX(Isrc,Jsrc) # endif END IF # endif END IF END IF ELSE IF (INT(SOURCES(ng)%Dsrc(is)).eq.1) THEN # ifdef TS_MPDATA_NOT_YET IF (((IstrUm2.le.Isrc).and.(Isrc.le.Iendp2i)).and. & & ((JstrVm2.le.Jsrc).and.(Jsrc.le.Jendp3))) THEN # else IF (((Istr.le.Isrc).and.(Isrc.le.Iend)).and. & & ((Jstr.le.Jsrc).and.(Jsrc.le.Jend+1))) THEN # endif IF (LtracerSrc(itrc,ng)) THEN !> FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & !> & SOURCES(ng)%Tsrc(is,k,itrc) !> tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & SOURCES(ng)%Tsrc(is,k,itrc) # ifdef MASKING ELSE IF ((rmask(Isrc,Jsrc ).eq.0.0_r8).and. & & (rmask(Isrc,Jsrc-1).eq.1.0_r8)) THEN FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & & t(Isrc,Jsrc-1,k,3,itrc) tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & t(Isrc,Jsrc-1,k,3,itrc)+ & & Hvom(Isrc,Jsrc,k)* & & tl_t(Isrc,Jsrc-1,k,3,itrc)- & # ifdef TL_IOMS & FE(Isrc,Jsrc) # endif ELSE IF ((rmask(Isrc,Jsrc ).eq.1.0_r8).and. & & (rmask(Isrc,Jsrc-1).eq.0.0_r8)) THEN !> FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & !> & t(Isrc,Jsrc ,k,3,itrc) !> tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & t(Isrc,Jsrc ,k,3,itrc)+ & & Hvom(Isrc,Jsrc,k)* & & tl_t(Isrc,Jsrc ,k,3,itrc)- & # ifdef TL_IOMS & FE(Isrc,Jsrc) # endif END IF # endif END IF END IF END IF END DO END IF ! # ifdef TS_MPDATA_NOT_YET ! Time-step horizontal advection for intermediate diffusive tracer, Ta. ! Advective fluxes have units of Tunits m3/s. The new tracer has ! units of m Tunits. # else ! Time-step horizontal advection term. Advective fluxes have units ! of Tunits m3/s. The new tracer has units of m Tunits. # endif ! # ifdef TS_MPDATA_NOT_YET # define I_RANGE IstrUm2,Iendp2i # define J_RANGE JstrVm2,Jendp2i # else # define I_RANGE Istr,Iend # define J_RANGE Jstr,Jend # endif DO j=J_RANGE DO i=I_RANGE cff=dt(ng)*pm(i,j)*pn(i,j) !> cff1=cff*(FX(i+1,j)-FX(i,j)) !> tl_cff1=cff*(tl_FX(i+1,j)-tl_FX(i,j)) !> cff2=cff*(FE(i,j+1)-FE(i,j)) !> tl_cff2=cff*(tl_FE(i,j+1)-tl_FE(i,j)) !> cff3=cff1+cff2 !> tl_cff3=tl_cff1+tl_cff2 # ifdef TS_MPDATA_NOT_YET Ta(i,j,k,itrc)=t(i,j,k,nnew,itrc)-cff3 tl_Ta(i,j,k,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff3 # else !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)-cff3 !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff3 # endif # ifdef DIAGNOSTICS_TS # ifdef TS_MPDATA_NOT_YET !! Dhadv(i,j,iTxadv)=-cff1 !! Dhadv(i,j,iTyadv)=-cff2 !! Dhadv(i,j,iThadv)=-cff3 # else !! DiaTwrk(i,j,k,itrc,iTxadv)=-cff1 !! DiaTwrk(i,j,k,itrc,iTyadv)=-cff2 !! DiaTwrk(i,j,k,itrc,iThadv)=-cff3 # endif # endif END DO END DO # if defined DIAGNOSTICS_TS && defined TS_MPDATA_NOT_YET !! DO j=Jstr,Jend !! DO i=Istr,Iend !! DiaTwrk(i,j,k,itrc,iTxadv)=Dhadv(i,j,iTxadv) !! DiaTwrk(i,j,k,itrc,iTyadv)=Dhadv(i,j,iTyadv) !! DiaTwrk(i,j,k,itrc,iThadv)=Dhadv(i,j,iThadv) !! END DO !! END DO # endif END DO K_LOOP END DO T_LOOP ! !----------------------------------------------------------------------- ! Time-step vertical advection term. !----------------------------------------------------------------------- ! DO j=J_RANGE DO itrc=1,NT(ng) # if defined TS_SVADVECTION_TL ! ! Build conservative parabolic splines for the vertical derivatives ! "FC" of the tracer. Then, the interfacial "FC" values are ! converted to vertical advective flux. ! DO i=Istr,Iend # ifdef NEUMANN FC(i,0)=1.5_r8*t(i,j,1,3,itrc) CF(i,1)=0.5_r8 # else FC(i,0)=2.0_r8*t(i,j,1,3,itrc) CF(i,1)=1.0_r8 # endif END DO DO k=1,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(2.0_r8*Hz(i,j,k)+ & & Hz(i,j,k+1)*(2.0_r8-CF(i,k))) CF(i,k+1)=cff*Hz(i,j,k) FC(i,k)=cff*(3.0_r8*(Hz(i,j,k )*t(i,j,k+1,3,itrc)+ & & Hz(i,j,k+1)*t(i,j,k ,3,itrc))- & & Hz(i,j,k+1)*FC(i,k-1)) END DO END DO DO i=Istr,Iend # ifdef NEUMANN FC(i,N(ng))=(3.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & & (2.0_r8-CF(i,N(ng))) # else FC(i,N(ng))=(2.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & & (1.0_r8-CF(i,N(ng))) # endif END DO DO k=N(ng)-1,0,-1 DO i=Istr,Iend FC(i,k)=FC(i,k)-CF(i,k+1)*FC(i,k+1) END DO END DO ! ! Now the tangent linear spline code. ! DO i=Istr,Iend # ifdef NEUMANN !> FC(i,0)=1.5_r8*t(i,j,1,3,itrc) !> tl_FC(i,0)=1.5_r8*tl_t(i,j,1,3,itrc) CF(i,1)=0.5_r8 # else !> FC(i,0)=2.0_r8*t(i,j,1,3,itrc) !> tl_FC(i,0)=2.0_r8*tl_t(i,j,1,3,itrc) CF(i,1)=1.0_r8 # endif END DO DO k=1,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(2.0_r8*Hz(i,j,k)+ & & Hz(i,j,k+1)*(2.0_r8-CF(i,k))) CF(i,k+1)=cff*Hz(i,j,k) # ifdef TL_IOMS tl_FC(i,k)=cff* & & (3.0_r8*(Hz(i,j,k )*tl_t(i,j,k+1,3,itrc)+ & & Hz(i,j,k+1)*tl_t(i,j,k ,3,itrc)+ & & tl_Hz(i,j,k )*t(i,j,k+1,3,itrc)+ & & tl_Hz(i,j,k+1)*t(i,j,k ,3,itrc)- & & Hz(i,j,k )*t(i,j,k+1,3,itrc)- & & Hz(i,j,k+1)*t(i,j,k ,3,itrc))- & & ((tl_Hz(i,j,k+1)-Hz(i,j,k+1))*FC(i,k-1)+ & & 2.0_r8*(tl_Hz(i,j,k )+ & & tl_Hz(i,j,k+1)- & & Hz(i,j,k )- & & Hz(i,j,k+1))*FC(i,k)+ & & (tl_Hz(i,j,k )-Hz(i,j,k ))*FC(i,k+1))- & & Hz(i,j,k+1)*tl_FC(i,k-1)) # else tl_FC(i,k)=cff* & (3.0_r8*(Hz(i,j,k )*tl_t(i,j,k+1,3,itrc)+ & & Hz(i,j,k+1)*tl_t(i,j,k ,3,itrc)+ & & tl_Hz(i,j,k )*t(i,j,k+1,3,itrc)+ & & tl_Hz(i,j,k+1)*t(i,j,k ,3,itrc))- & & (tl_Hz(i,j,k+1)*FC(i,k-1)+ & & 2.0_r8*(tl_Hz(i,j,k )+ & & tl_Hz(i,j,k+1))*FC(i,k)+ & & tl_Hz(i,j,k )*FC(i,k+1))- & & Hz(i,j,k+1)*tl_FC(i,k-1)) # endif END DO END DO DO i=Istr,Iend # ifdef NEUMANN !> FC(i,N(ng))=(3.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & !> & (2.0_r8-CF(i,N(ng))) !> tl_FC(i,N(ng))=(3.0_r8*tl_t(i,j,N(ng),3,itrc)- & & tl_FC(i,N(ng)-1))/ & & (2.0_r8-CF(i,N(ng))) # else !> FC(i,N(ng))=(2.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & !> & (1.0_r8-CF(i,N(ng))) !> tl_FC(i,N(ng))=(2.0_r8*tl_t(i,j,N(ng),3,itrc)- & & tl_FC(i,N(ng)-1))/ & & (1.0_r8-CF(i,N(ng))) # endif END DO DO k=N(ng)-1,0,-1 DO i=Istr,Iend !> FC(i,k)=FC(i,k)-CF(i,k+1)*FC(i,k+1) !> tl_FC(i,k)=tl_FC(i,k)-CF(i,k+1)*tl_FC(i,k+1) !> FC(i,k+1)=W(i,j,k+1)*FC(i,k+1) !> tl_FC(i,k+1)=tl_W(i,j,k+1)*FC(i,k+1)+ & & W(i,j,k+1)*tl_FC(i,k+1)- & # ifdef TL_IOMS & W(i,j,k+1)*FC(i,k+1) # endif END DO END DO DO i=Istr,Iend !> FC(i,N(ng))=0.0_r8 !> tl_FC(i,N(ng))=0.0_r8 !> FC(i,0)=0.0_r8 !> tl_FC(i,0)=0.0_r8 END DO ! ! Now complete the computation of the flux array FC. ! DO k=N(ng)-1,0,-1 DO i=Istr,Iend FC(i,k+1)=W(i,j,k+1)*FC(i,k+1) END DO END DO DO i=Istr,Iend FC(i,N(ng))=0.0_r8 FC(i,0)=0.0_r8 END DO # elif defined TS_A4VADVECTION_TL ! ! Fourth-order, Akima vertical advective flux. ! DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=t(i,j,k+1,3,itrc)- & & t(i,j,k ,3,itrc) tl_FC(i,k)=tl_t(i,j,k+1,3,itrc)- & & tl_t(i,j,k ,3,itrc) END DO END DO DO i=Istr,Iend FC(i,0)=FC(i,1) tl_FC(i,0)=tl_FC(i,1) FC(i,N(ng))=FC(i,N(ng)-1) tl_FC(i,N(ng))=tl_FC(i,N(ng)-1) END DO DO k=1,N(ng) DO i=Istr,Iend cff=2.0_r8*FC(i,k)*FC(i,k-1) tl_cff=2.0_r8*(tl_FC(i,k)*FC(i,k-1)+ & & FC(i,k)*tl_FC(i,k-1))- & # ifdef TL_IOMS & cff # endif IF (cff.gt.eps) THEN CF(i,k)=cff/(FC(i,k)+FC(i,k-1)) tl_CF(i,k)=((FC(i,k)+FC(i,k-1))*tl_cff- & & cff*(tl_FC(i,k)+tl_FC(i,k-1)))/ & & ((FC(i,k)+FC(i,k-1))*(FC(i,k)+FC(i,k-1)))+ & # ifdef TL_IOMS & CF(i,k) # endif ELSE CF(i,k)=0.0_r8 tl_CF(i,k)=0.0_r8 END IF END DO END DO cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & 0.5_r8*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)- & & cff1*(CF(i,k+1)-CF(i,k))) tl_FC(i,k)=0.5_r8* & & (tl_W(i,j,k)* & & (t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)- & & cff1*(CF(i,k+1)-CF(i,k)))+ & & W(i,j,k)* & & (tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc)- & & cff1*(tl_CF(i,k+1)-tl_CF(i,k))))- & # ifdef TL_IOMS & FC(i,k) # endif END DO END DO DO i=Istr,Iend # ifdef SED_MORPH FC(i,0)=W(i,j,0)*t(i,j,1,3,itrc) tl_FC(i,0)=tl_W(i,j,0)*t(i,j,1,3,itrc)+ & & W(i,j,0)*tl_t(i,j,1,3,itrc)- & # ifdef TL_IOMS & FC(i,0) # endif # else FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 # endif FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO # elif defined TS_C2VADVECTION_TL ! ! Second-order, central differences vertical advective flux. ! DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & 0.5_r8*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)) tl_FC(i,k)=0.5_r8* & & (tl_W(i,j,k)* & & (t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))+ & & W(i,j,k)* & & (tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc)))- & # ifdef TL_IOMS & FC(i,k) # endif END DO END DO DO i=Istr,Iend # ifdef SED_MORPH FC(i,0)=W(i,j,0)*t(i,j,1,3,itrc) tl_FC(i,0)=tl_W(i,j,0)*t(i,j,1,3,itrc)+ & & W(i,j,0)*tl_t(i,j,1,3,itrc)- & # ifdef TL_IOMS & FC(i,0) # endif # else FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 # endif FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO # elif defined TS_MPDATA_NOT_YET ! ! First_order, upstream differences vertical advective flux. ! DO i=I_RANGE DO k=1,N(ng)-1 cff1=MAX(W(i,j,k),0.0_r8) cff2=MIN(W(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, W(i,j,k)))*tl_W(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5_r8,-W(i,j,k)))*tl_W(i,j,k) FC(i,k)=cff1*t(i,j,k ,3,itrc)+ & & cff2*t(i,j,k+1,3,itrc) tl_FC(i,k)=tl_cff1*t(i,j,k ,3,itrc)+ & & cff1*tl_t(i,j,k ,3,itrc)+ & & tl_cff2*t(i,j,k+1,3,itrc)+ & & cff2*tl_t(i,j,k+1,3,itrc)- & # ifdef TL_IOMS & FC(i,k) # endif END DO # ifdef SED_MORPH FC(i,0)=W(i,j,0)*t(i,j,1,3,itrc) tl_FC(i,0)=tl_W(i,j,0)*t(i,j,1,3,itrc)+ & & W(i,j,0)*tl_t(i,j,1,3,itrc)- & # ifdef TL_IOMS & FC(i,0) # endif # else FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 # endif FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO # else ! ! Fourth-order, central differences vertical advective flux. ! cff1=0.5_r8 cff2=7.0_r8/12.0_r8 cff3=1.0_r8/12.0_r8 DO k=2,N(ng)-2 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & (cff2*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))- & & cff3*(t(i,j,k-1,3,itrc)+ & & t(i,j,k+2,3,itrc))) tl_FC(i,k)=tl_W(i,j,k)* & & (cff2*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))- & & cff3*(t(i,j,k-1,3,itrc)+ & & t(i,j,k+2,3,itrc)))+ & & W(i,j,k)* & & (cff2*(tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc))- & & cff3*(tl_t(i,j,k-1,3,itrc)+ & & tl_t(i,j,k+2,3,itrc)))- & # ifdef TL_IOMS & FC(i,k) # endif END DO END DO DO i=Istr,Iend # ifdef SED_MORPH FC(i,0)=W(i,j,0)*2.0_r8* & & (cff2*t(i,j,1,3,itrc)- & & cff3*t(i,j,2,3,itrc)) tl_FC(i,0)=2.0_r8* & & (tl_W(i,j,0)* & & (cff2*t(i,j,1,3,itrc)- & & cff3*t(i,j,2,3,itrc))+ & & W(i,j,0)* & & (cff2*tl_t(i,j,1,3,itrc)- & & cff3*tl_t(i,j,2,3,itrc)))- & # ifdef TL_IOMS & FC(i,0) # endif # else FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 # endif FC(i,1)=W(i,j,1)* & & (cff1*t(i,j,1,3,itrc)+ & & cff2*t(i,j,2,3,itrc)- & & cff3*t(i,j,3,3,itrc)) tl_FC(i,1)=tl_W(i,j,1)* & & (cff1*t(i,j,1,3,itrc)+ & & cff2*t(i,j,2,3,itrc)- & & cff3*t(i,j,3,3,itrc))+ & & W(i,j,1)* & & (cff1*tl_t(i,j,1,3,itrc)+ & & cff2*tl_t(i,j,2,3,itrc)- & & cff3*tl_t(i,j,3,3,itrc))- & # ifdef TL_IOMS & FC(i,1) # endif FC(i,N(ng)-1)=W(i,j,N(ng)-1)* & & (cff1*t(i,j,N(ng) ,3,itrc)+ & & cff2*t(i,j,N(ng)-1,3,itrc)- & & cff3*t(i,j,N(ng)-2,3,itrc)) tl_FC(i,N(ng)-1)=tl_W(i,j,N(ng)-1)* & & (cff1*t(i,j,N(ng) ,3,itrc)+ & & cff2*t(i,j,N(ng)-1,3,itrc)- & & cff3*t(i,j,N(ng)-2,3,itrc))+ & & W(i,j,N(ng)-1)* & & (cff1*tl_t(i,j,N(ng) ,3,itrc)+ & & cff2*tl_t(i,j,N(ng)-1,3,itrc)- & & cff3*tl_t(i,j,N(ng)-2,3,itrc))- & # ifdef TL_IOMS & FC(i,N(ng)-1) # endif FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO # endif ! # ifdef TS_MPDATA_NOT_YET ! Time-step vertical advection for intermediate diffusive tracer, Ta ! (Tunits). # else # ifdef SPLINES_VDIFF ! Time-step vertical advection term (Tunits). ! The BASIC STATE "t" used below must be in transport units, but "t" ! retrived is in Tunits so we multiply by "Hz". # else ! Time-step vertical advection term (m Tunits). # endif # endif ! DO i=I_RANGE CF(i,0)=dt(ng)*pm(i,j)*pn(i,j) END DO ! ! Apply mass point sources (volume vertical influx), if any. ! IF (LwSrc(ng).and.ANY(LtracerSrc(:,ng))) THEN DO is=1,Nsrc(ng) Isrc=SOURCES(ng)%Isrc(is) Jsrc=SOURCES(ng)%Jsrc(is) IF (LtracerSrc(itrc,ng).and. & # ifdef TS_MPDATA_NOT_YET & ((IstrUm2.le.Isrc).and.(Isrc.le.Iendp2i)).and. & # else & ((IstrR.le.Isrc).and.(Isrc.le.IendR)).and. & # endif & (j.eq.Jsrc)) THEN DO k=1,N(ng)-1 FC(Isrc,k)=FC(Isrc,k)+0.5_r8* & & (SOURCES(ng)%Qsrc(is,k )* & & SOURCES(ng)%Tsrc(is,k ,itrc)+ & & SOURCES(ng)%Qsrc(is,k+1)* & & SOURCES(ng)%Tsrc(is,k+1,itrc)) tl_FC(Isrc,k)=tl_FC(Isrc,k)+0.0_r8 END DO END IF END DO END IF ! DO k=1,N(ng) DO i=I_RANGE cff1=CF(i,0)*(FC(i,k)-FC(i,k-1)) tl_cff1=CF(i,0)*(tl_FC(i,k)-tl_FC(i,k-1)) # ifdef TS_MPDATA_NOT_YET Ta(i,j,k,itrc)=(Ta(i,j,k,itrc)-cff1)*oHz(i,j,k) tl_Ta(i,j,k,itrc)=(tl_Ta(i,j,k,itrc)-tl_cff1)* & & oHz(i,j,k)+ & & (Ta(i,j,k,itrc)-cff1)* & & tl_oHz(i,j,k)- & # ifdef TL_IOMS & Ta(i,j,k,itrc) # endif # ifdef DIAGNOSTICS_TS !! Dvadv(i,j,k,itrc)=-cff1 # endif # else !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)-cff1 !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff1 # ifdef SPLINES_VDIFF !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)*oHz(i,j,k) !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)* & & oHz(i,j,k)+ & & (t(i,j,k,nnew,itrc)*Hz(i,j,k))* & & tl_oHz(i,j,k)- & # ifdef TL_IOMS & t(i,j,k,nnew,itrc) # endif # endif # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iTvadv)=-cff1 !! DO idiag=1,NDT !! DiaTwrk(i,j,k,itrc,idiag)=DiaTwrk(i,j,k,itrc,idiag)* & !! & oHz(i,j,k) !! END DO # endif # endif END DO END DO END DO # undef I_RANGE # undef J_RANGE # ifdef TS_MPDATA_NOT_YET END DO ! !----------------------------------------------------------------------- ! Compute anti-diffusive velocities to corrected advected tracers ! using MPDATA recursive method. Notice that pipelined J-loop ended. !----------------------------------------------------------------------- ! DO itrc=1,NT(ng) !> CALL mpdata_adiff_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, & !> & IminS, ImaxS, JminS, JmaxS, & # ifdef MASKING !> & rmask, umask, vmask, & # endif # ifdef WET_DRY !> & rmask_wet, umask_wet, vmask_wet, & # endif !> & pm, pn, omn, om_u, on_v, & !> & z_r, oHz, & !> & Huon, Hvom, W, & !> & t(:,:,:,3,itrc), & !> & Ta(:,:,:,itrc), Ua, Va, Wa) !> CALL rp_mpdata_adiff_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & # ifdef MASKING & rmask, umask, vmask, & # endif # ifdef WET_DRY & rmask_wet, umask_wet, vmask_wet, & # endif & pm, pn, omn, om_u, on_v, & & z_r, tl_z_r, & & oHz, tl_oHz, & & Huon, tl_Huon, & & Hvom, tl_Hvom, & & W, tl_W, & & t(:,:,:,3,itrc), tl_t(:,:,:,3,itrc), & & Ta(:,:,:,itrc), tl_Ta(:,:,:,itrc), & & Ua, tl_Ua, & & Va, tl_Va, & & Wa, tl_Wa) ! ! Compute anti-diffusive corrected advection fluxes. ! DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend+1 cff1=MAX(Ua(i,j,k),0.0_r8) cff2=MIN(Ua(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, Ua(i,j,k)))*tl_Ua(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5_r8,-Ua(i,j,k)))*tl_Ua(i,j,k) FX(i,j)=(cff1*Ta(i-1,j,k,itrc)+ & & cff2*Ta(i ,j,k,itrc))* & & 0.5_r8*(Hz(i,j,k)+Hz(i-1,j,k))*on_u(i,j) tl_FX(i,j)=0.5_r8*on_u(i,j)* & & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & & (cff1*Ta(i-1,j,k,itrc)+ & & cff2*Ta(i ,j,k,itrc))+ & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (tl_cff1*Ta(i-1,j,k,itrc)+ & & cff1*tl_Ta(i-1,j,k,itrc)+ & & tl_cff2*Ta(i ,j,k,itrc)+ & & cff2*tl_Ta(i ,j,k,itrc)))- & # ifdef TL_IOMS & 2.0_r8*FX(i,j) # endif END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend cff1=MAX(Va(i,j,k),0.0_r8) cff2=MIN(Va(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, Va(i,j,k)))*tl_Va(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5_r8,-Va(i,j,k)))*tl_Va(i,j,k) FE(i,j)=(cff1*Ta(i,j-1,k,itrc)+ & & cff2*Ta(i,j ,k,itrc))* & & 0.5_r8*(Hz(i,j,k)+Hz(i,j-1,k))*om_v(i,j) tl_FE(i,j)=0.5_r8*om_v(i,j)* & & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & & (cff1*Ta(i,j-1,k,itrc)+ & & cff2*Ta(i,j ,k,itrc))+ & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (tl_cff1*Ta(i,j-1,k,itrc)+ & & cff1*tl_Ta(i,j-1,k,itrc)+ & & tl_cff2*Ta(i,j ,k,itrc)+ & & cff2*tl_Ta(i,j ,k,itrc)))- & # ifdef TL_IOMS & 2.0_r8*FE(i,j) # endif END DO END DO ! ! Time-step corrected horizontal advection (Tunits m). ! DO j=Jstr,Jend DO i=Istr,Iend cff=dt(ng)*pm(i,j)*pn(i,j) !> cff1=cff*(FX(i+1,j)-FX(i,j)) !> tl_cff1=cff*(tl_FX(i+1,j)-tl_FX(i,j)) !> cff2=cff*(FE(i,j+1)-FE(i,j)) !> tl_cff2=cff*(tl_FE(i,j+1)-tl_FE(i,j)) !> cff3=cff1+cff2 !> tl_cff3=tl_cff1+tl_cff2 !> t(i,j,k,nnew,itrc)=Ta(i,j,k,itrc)*Hz(i,j,k)-cff3 !> tl_t(i,j,k,nnew,itrc)=tl_Ta(i,j,k,itrc)*Hz(i,j,k)+ & & Ta(i,j,k,itrc)*tl_Hz(i,j,k)-tl_cff3-& # ifdef TL_IOMS & Ta(i,j,k,itrc)*Hz(i,j,k) # endif # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iTxadv)=DiaTwrk(i,j,k,itrc,iTxadv)- & !! & cff1 !! DiaTwrk(i,j,k,itrc,iTyadv)=DiaTwrk(i,j,k,itrc,iTyadv)- & !! & cff2 !! DiaTwrk(i,j,k,itrc,iThadv)=DiaTwrk(i,j,k,itrc,iThadv)- & !! & cff3 # endif END DO END DO END DO ! ! Compute anti-diffusive corrected vertical advection flux. ! DO j=Jstr,Jend DO k=1,N(ng)-1 DO i=Istr,Iend cff1=MAX(Wa(i,j,k),0.0_r8) cff2=MIN(Wa(i,j,k),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5, Wa(i,j,k)))*tl_Wa(i,j,k) tl_cff2=(0.5_r8+SIGN(0.5,-Wa(i,j,k)))*tl_Wa(i,j,k) FC(i,k)=cff1*Ta(i,j,k ,itrc)+ & & cff2*Ta(i,j,k+1,itrc) tl_FC(i,k)=tl_cff1*Ta(i,j,k ,itrc)+ & & cff1*tl_Ta(i,j,k ,itrc)+ & & tl_cff2*Ta(i,j,k+1,itrc)+ & & cff2*tl_Ta(i,j,k+1,itrc)- & # ifdef TL_IOMS & FC(i,j) # endif END DO END DO DO i=Istr,Iend !> FC(i,0)=0.0_r8 !> tl_FC(i,0)=0.0_r8 !> FC(i,N(ng))=0.0_r8 !> tl_FC(i,N(ng))=0.0_r8 END DO ! ! Time-step corrected vertical advection (Tunits). # ifdef DIAGNOSTICS_TS ! Convert units of tracer diagnostic terms to Tunits. # endif ! DO i=Istr,Iend CF(i,0)=dt(ng)*pm(i,j)*pn(i,j) END DO DO k=1,N(ng) DO i=Istr,Iend !> cff1=CF(i,0)*(FC(i,k)-FC(i,k-1)) !> tl_cff1=CF(i,0)*(tl_FC(i,k)-tl_FC(i,k-1)) !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)-cff1 !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff1 # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iTvadv)=Dvadv(i,j,k,itrc)- & !! & cff1 !! DO idiag=1,NDT !! DiaTwrk(i,j,k,itrc,idiag)=DiaTwrk(i,j,k,itrc,idiag)* & !! & oHz(i,j,k) !! END DO # endif END DO END DO END DO END DO ! ! Start pipelined J-loop. ! DO j=Jstr,Jend # endif /* TS_MPDATA_NOT_YET */ ! !----------------------------------------------------------------------- ! Time-step vertical diffusion term. !----------------------------------------------------------------------- ! DO itrc=1,NT(ng) ltrc=MIN(NAT,itrc) # if defined SPLINES_VDIFF && !defined TS_MPDATA_NOT_YET ! ! Use conservative, parabolic spline reconstruction of BASIC STATE ! vertical diffusion derivatives. Solve BASIC STATE tridiagonal ! system. ! cff1=1.0_r8/6.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=cff1*Hz(i,j,k )- & & dt(ng)*Akt(i,j,k-1,ltrc)*oHz(i,j,k ) CF(i,k)=cff1*Hz(i,j,k+1)- & & dt(ng)*Akt(i,j,k+1,ltrc)*oHz(i,j,k+1) END DO END DO DO i=Istr,Iend CF(i,0)=0.0_r8 DC(i,0)=0.0_r8 END DO ! ! LU decomposition and forward substitution. ! cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend BC(i,k)=cff1*(Hz(i,j,k)+Hz(i,j,k+1))+ & & dt(ng)*Akt(i,j,k,ltrc)*(oHz(i,j,k)+oHz(i,j,k+1)) cff=1.0_r8/(BC(i,k)-FC(i,k)*CF(i,k-1)) CF(i,k)=cff*CF(i,k) DC(i,k)=cff*(t(i,j,k+1,nnew,itrc)-t(i,j,k,nnew,itrc)- & & FC(i,k)*DC(i,k-1)) END DO END DO ! ! Backward substitution. Save DC for the tangent linearization. ! DC is scaled later by AKt. ! DO i=Istr,Iend DC(i,N(ng))=0.0_r8 END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) END DO END DO ! ! Use conservative, parabolic spline reconstruction of tangent linear ! vertical diffusion derivatives. Then, time step vertical diffusion ! term implicitly. ! ! Note that the BASIC STATE "t" must in Tunits when used in the ! tangent spline routine below, which it does in the present code. ! cff1=1.0_r8/6.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=cff1*Hz(i,j,k )- & & dt(ng)*Akt(i,j,k-1,ltrc)*oHz(i,j,k ) tl_FC(i,k)=cff1*tl_Hz(i,j,k )- & & dt(ng)*(tl_Akt(i,j,k-1,ltrc)*oHz(i,j,k )+ & & Akt(i,j,k-1,ltrc)*tl_oHz(i,j,k )) CF(i,k)=cff1*Hz(i,j,k+1)- & & dt(ng)*Akt(i,j,k+1,ltrc)*oHz(i,j,k+1) tl_CF(i,k)=cff1*tl_Hz(i,j,k+1)- & & dt(ng)*(tl_Akt(i,j,k+1,ltrc)*oHz(i,j,k+1)+ & & Akt(i,j,k+1,ltrc)*tl_oHz(i,j,k+1)) END DO END DO DO i=Istr,Iend CF(i,0)=0.0_r8 tl_CF(i,0)=0.0_r8 tl_DC(i,0)=0.0_r8 END DO ! ! Tangent linear LU decomposition and forward substitution. # ifdef TL_IOMS ! Note that when tl_Akt is computed, we need tl_BC=tl_BC-dt*Ak*oHz. # endif ! cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend BC(i,k)=cff1*(Hz(i,j,k)+Hz(i,j,k+1))+ & & dt(ng)*Akt(i,j,k,ltrc)*(oHz(i,j,k)+oHz(i,j,k+1)) tl_BC(i,k)=cff1*(tl_Hz(i,j,k)+tl_Hz(i,j,k+1))+ & & dt(ng)*(tl_Akt(i,j,k,ltrc)* & & (oHz(i,j,k)+oHz(i,j,k+1))+ & & Akt(i,j,k,ltrc)* & & (tl_oHz(i,j,k)+tl_oHz(i,j,k+1))) cff=1.0_r8/(BC(i,k)-FC(i,k)*CF(i,k-1)) # ifdef TL_IOMS tl_DC(i,k)=cff*(tl_t(i,j,k+1,nnew,itrc)- & & tl_t(i,j,k ,nnew,itrc)- & & ((tl_FC(i,k)-FC(i,k))*DC(i,k-1)+ & & (tl_BC(i,k)-BC(i,k))*DC(i,k )+ & & (tl_CF(i,k)-CF(i,k))*DC(i,k+1))- & & FC(i,k)*tl_DC(i,k-1)) CF(i,k)=cff*CF(i,k) # else CF(i,k)=cff*CF(i,k) tl_DC(i,k)=cff*(tl_t(i,j,k+1,nnew,itrc)- & & tl_t(i,j,k ,nnew,itrc)- & & (tl_FC(i,k)*DC(i,k-1)+ & & tl_BC(i,k)*DC(i,k )+ & & tl_CF(i,k)*DC(i,k+1))- & & FC(i,k)*tl_DC(i,k-1)) # endif END DO END DO ! ! Tangent linear backward substitution. ! DO i=Istr,Iend tl_DC(i,N(ng))=0.0_r8 END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend tl_DC(i,k)=tl_DC(i,k)-CF(i,k)*tl_DC(i,k+1) END DO END DO ! ! Compute tl_DC before multiplying BASIC STATE spline gradients ! DC by AKt. ! DO k=1,N(ng) DO i=Istr,Iend tl_DC(i,k)=tl_DC(i,k)*Akt(i,j,k,ltrc)+ & & DC(i,k)*tl_Akt(i,j,k,ltrc) # ifdef TL_IOMS ! tl_DC(i,k)=tl_DC(i,k)- & ! & DC(i,k)*Akt(i,j,k,ltrc) ! if tl_Akt computed # endif DC(i,k)=DC(i,k)*Akt(i,j,k,ltrc) !> cff1=dt(ng)*oHz(i,j,k)*(DC(i,k)-DC(i,k-1)) !> tl_cff1=dt(ng)*(tl_oHz(i,j,k)*(DC(i,k)-DC(i,k-1))+ & & oHz(i,j,k)*(tl_DC(i,k)-tl_DC(i,k-1)))- & # ifdef TL_IOMS & dt(ng)*oHz(i,j,k)*(DC(i,k)-DC(i,k-1)) # endif !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)+cff1 !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)+tl_cff1 # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iTvdif)=DiaTwrk(i,j,k,itrc,iTvdif)+ & !! & cff1 # endif END DO END DO # else ! ! Compute off-diagonal coefficients FC [lambda*dt*Akt/Hz] for the ! implicit vertical diffusion terms at future time step, located ! at horizontal RHO-points and vertical W-points. ! Also set FC at the top and bottom levels. ! ! NOTE: The original code solves the tridiagonal system A*t=r where ! A is a matrix and t and r are vectors. We need to solve the ! tangent linear C of this system which is A*tl_t+tl_A*t=tl_r. ! Here, tl_A*t and tl_r are known, so we must solve for tl_t ! by inverting A*tl_t=tl_r-tl_A*t. ! cff=-dt(ng)*lambda DO k=1,N(ng)-1 DO i=Istr,Iend cff1=1.0_r8/(z_r(i,j,k+1)-z_r(i,j,k)) tl_cff1=-cff1*cff1*(tl_z_r(i,j,k+1)-tl_z_r(i,j,k))+ & # ifdef TL_IOMS & 2.0_r8*cff1 # endif FC(i,k)=cff*cff1*Akt(i,j,k,ltrc) tl_FC(i,k)=cff*(tl_cff1*Akt(i,j,k,ltrc)+ & & cff1*tl_Akt(i,j,k,ltrc)) # ifdef TL_IOMS ! ! Uncomment if tl_Akt is computed. ! ! tl_FC(i,k)=tl_FC(i,k)-FC(i,k) # endif END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO ! ! Compute diagonal matrix coefficients BC. ! DO k=1,N(ng) DO i=Istr,Iend BC(i,k)=Hz(i,j,k)-FC(i,k)-FC(i,k-1) tl_BC(i,k)=tl_Hz(i,j,k)-tl_FC(i,k)-tl_FC(i,k-1) END DO END DO ! ! Solve the tangent linear tridiagonal system. ! (DC is a tangent linear variable here). ! DO k=2,N(ng)-1 DO i=Istr,Iend # ifdef TL_IOMS DC(i,k)=tl_t(i,j,k,nnew,itrc)- & & ((tl_FC(i,k-1)-FC(i,k-1))*t(i,j,k-1,nnew,itrc)+ & & (tl_BC(i,k )-BC(i,k ))*t(i,j,k ,nnew,itrc)+ & & (tl_FC(i,k )-FC(i,k ))*t(i,j,k+1,nnew,itrc)) # else DC(i,k)=tl_t(i,j,k,nnew,itrc)- & & (tl_FC(i,k-1)*t(i,j,k-1,nnew,itrc)+ & & tl_BC(i,k )*t(i,j,k ,nnew,itrc)+ & & tl_FC(i,k )*t(i,j,k+1,nnew,itrc)) # endif END DO END DO DO i=Istr,Iend # ifdef TL_IOMS DC(i,1)=tl_t(i,j,1,nnew,itrc)- & & ((tl_BC(i,1)-BC(i,1))*t(i,j,1,nnew,itrc)+ & & (tl_FC(i,1)-FC(i,1))*t(i,j,2,nnew,itrc)) DC(i,N(ng))=tl_t(i,j,N(ng),nnew,itrc)- & & ((tl_FC(i,N(ng)-1)-FC(i,N(ng)-1))* & & t(i,j,N(ng)-1,nnew,itrc)+ & & (tl_BC(i,N(ng) )-BC(i,N(ng) ))* & & t(i,j,N(ng) ,nnew,itrc)) # else DC(i,1)=tl_t(i,j,1,nnew,itrc)- & & (tl_BC(i,1)*t(i,j,1,nnew,itrc)+ & & tl_FC(i,1)*t(i,j,2,nnew,itrc)) DC(i,N(ng))=tl_t(i,j,N(ng),nnew,itrc)- & & (tl_FC(i,N(ng)-1)*t(i,j,N(ng)-1,nnew,itrc)+ & & tl_BC(i,N(ng) )*t(i,j,N(ng) ,nnew,itrc)) # endif END DO ! DO i=Istr,Iend cff=1.0_r8/BC(i,1) CF(i,1)=cff*FC(i,1) DC(i,1)=cff*DC(i,1) END DO DO k=2,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(BC(i,k)-FC(i,k-1)*CF(i,k-1)) CF(i,k)=cff*FC(i,k) DC(i,k)=cff*(DC(i,k)-FC(i,k-1)*DC(i,k-1)) END DO END DO ! ! Compute new solution by back substitution. ! (DC is a tangent linear variable here). ! DO i=Istr,Iend # ifdef DIAGNOSTICS_TS !! cff1=t(i,j,N(ng),nnew,itrc)*oHz(i,j,N(ng)) # endif DC(i,N(ng))=(DC(i,N(ng))-FC(i,N(ng)-1)*DC(i,N(ng)-1))/ & & (BC(i,N(ng))-FC(i,N(ng)-1)*CF(i,N(ng)-1)) tl_t(i,j,N(ng),nnew,itrc)=DC(i,N(ng)) # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,N(ng),itrc,iTvdif)= & !! & DiaTwrk(i,j,N(ng),itrc,iTvdif)+ & !! & t(i,j,N(ng),nnew,itrc)-cff1 # endif END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend # ifdef DIAGNOSTICS_TS !! cff1=t(i,j,k,nnew,itrc)*oHz(i,j,k) # endif DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) tl_t(i,j,k,nnew,itrc)=DC(i,k) # ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iTvdif)=DiaTwrk(i,j,k,itrc,iTvdif)+ & !! & t(i,j,k,nnew,itrc)-cff1 # endif END DO END DO # endif END DO END DO # if defined AGE_MEAN && defined T_PASSIVE ! !----------------------------------------------------------------------- ! If inert passive tracer and Mean Age, compute age concentration (even ! inert index) forced by the right-hand-side term that is concentration ! of an associated conservative passive tracer (odd inert index). Mean ! Age is age concentration divided by conservative passive tracer ! concentration. Code implements NPT/2 mean age tracer pairs. ! ! Implemented and tested by W.G. Zhang and J. Wilkin. See following ! reference for details. ! ! Zhang et al. (2010): Simulation of water age and residence time in ! the New York Bight, JPO, 40,965-982, doi:10.1175/2009JPO4249.1 !----------------------------------------------------------------------- ! DO itrc=1,NPT,2 iage=inert(itrc+1) ! even inert tracer index DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend !> t(i,j,k,nnew,iage)=t(i,j,k,nnew,iage)+ & !> & dt(ng)* & # ifdef TS_MPDATA !> & t(i,j,k,nnew,inert(itrc)) # else !> & t(i,j,k,3,inert(itrc)) # endif !> tl_t(i,j,k,nnew,iage)=tl_t(i,j,k,nnew,iage)+ & & dt(ng)* & # ifdef TS_MPDATA & tl_t(i,j,k,nnew,inert(itrc)) # else & tl_t(i,j,k,3,inert(itrc)) # endif END DO END DO END DO END DO # endif ! !----------------------------------------------------------------------- ! Apply lateral boundary conditions and, if appropriate, nudge ! to tracer data and apply Land/Sea mask. !----------------------------------------------------------------------- ! ! Initialize tracer counter index. The "tclm" array is only allocated ! to the NTCLM fields that need to be processed. This is done to ! reduce memory. ! ic=0 ! DO itrc=1,NT(ng) ! ! Set compact reduced memory tracer index for nudging coefficients and ! climatology arrays. ! IF (LtracerCLM(itrc,ng).and.LnudgeTCLM(itrc,ng)) THEN ic=ic+1 END IF ! ! Set lateral boundary conditions. ! !> CALL t3dbc_tile (ng, tile, itrc, ic, & !> & LBi, UBi, LBj, UBj, N(ng), NT(ng), & !> & IminS, ImaxS, JminS, JmaxS, & !> & nstp, nnew, & !> & t) !> CALL rp_t3dbc_tile (ng, tile, itrc, ic, & & LBi, UBi, LBj, UBj, N(ng), NT(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp, nnew, & & tl_t) ! ! Nudge towards tracer climatology. ! IF (LtracerCLM(itrc,ng).and.LnudgeTCLM(itrc,ng)) THEN DO k=1,N(ng) DO j=JstrR,JendR DO i=IstrR,IendR !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)+ & !> & dt(ng)* & !> & CLIMA(ng)%Tnudgcof(i,j,k,ic)* & !> & (CLIMA(ng)%tclm(i,j,k,ic)- & !> & t(i,j,k,nnew,itrc)) !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)- & & dt(ng)* & & CLIMA(ng)%Tnudgcof(i,j,k,ic)* & & tl_t(i,j,k,nnew,itrc)+ & # ifdef TL_IOMS & dt(ng)* & & CLIMA(ng)%Tnudgcof(i,j,k,ic)* & & CLIMA(ng)%tclm(i,j,k,ic) # endif END DO END DO END DO END IF # ifdef MASKING ! ! Apply Land/Sea mask. ! DO k=1,N(ng) DO j=JstrR,JendR DO i=IstrR,IendR !> t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)*rmask(i,j) !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)*rmask(i,j) END DO END DO END DO # endif # ifdef DIAGNOSTICS_TS !! !! Compute time-rate-of-change diagnostic term. !! !! DO k=1,N(ng) !! DO j=JstrR,JendR !! DO i=IstrR,IendR !! DiaTwrk(i,j,k,itrc,iTrate)=t(i,j,k,nnew,itrc)- & !! & DiaTwrk(i,j,k,itrc,iTrate) !! DiaTwrk(i,j,k,itrc,iTrate)=t(i,j,k,nnew,itrc)- & !! & t(i,j,k,nstp,itrc) !! END DO !! END DO !! END DO # endif ! ! Apply periodic boundary conditions. ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !> CALL exchange_r3d_tile (ng, tile, & !> & LBi, UBi, LBj, UBj, 1, N(ng), & !> & t(:,:,:,nnew,itrc)) !> CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_t(:,:,:,nnew,itrc)) END IF END DO # ifdef DISTRIBUTE ! ! Exchange boundary data. ! !> CALL mp_exchange4d (ng, tile, iNLM, 1, & !> & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & !> & NghostPoints, & !> & EWperiodic(ng), NSperiodic(ng), & !> & t(:,:,:,nnew,:)) !> CALL mp_exchange4d (ng, tile, iRPM, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_t(:,:,:,nnew,:)) # endif # if defined FLOATS_NOT_YET && defined FLOAT_VWALK ! !----------------------------------------------------------------------- ! Compute vertical gradient in vertical T-diffusion coefficient for ! floats random walk. !----------------------------------------------------------------------- ! DO j=JstrR,JendR DO i=IstrR,IendR DO k=1,N(ng) dAktdz(i,j,k)=(Akt(i,j,k,1)-Akt(i,j,k-1,1))/Hz(i,j,k) END DO END DO END DO ! ! Exchange boundary data. ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & dAktdz) END IF # ifdef DISTRIBUTE CALL mp_exchange3d (ng, tile, iNLM, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & dAktdz) # endif # endif RETURN END SUBROUTINE rp_step3d_t_tile #endif END MODULE rp_step3d_t_mod