#include "cppdefs.h" SUBROUTINE def_rst (ng) ! !svn $Id: def_rst.F 927 2018-10-16 03:51:56Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2019 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine creates restart NetCDF file, it defines its ! ! dimensions, attributes, and variables. ! ! ! #if defined PERFECT_RESTART && defined WRITE_WATER && defined MASKING ! Currently, perfect restart is not compatible with writing ! ! only water points. ! ! ! #endif !======================================================================= ! USE mod_param USE mod_parallel #ifdef BIOLOGY USE mod_biology #endif #ifdef VEGETATION USE mod_vegetation USE mod_vegarr #endif #ifdef FOUR_DVAR USE mod_fourdvar #endif USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_scalars #if defined SEDIMENT || defined BBL_MODEL USE mod_sediment #endif #ifdef INWAVE_MODEL USE mod_inwave_params #endif ! USE def_var_mod, ONLY : def_var USE strings_mod, ONLY : FoundError ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! logical :: Ldefine, got_var(NV) integer, parameter :: Natt = 25 integer :: i, j, nvd3, nvd4, nvd5 integer :: recdim, status, varid #if defined VEGETATION && (defined VEG_DRAG || defined VEG_BIOMASS) integer :: DimIDs(35) #elif defined INWAVE_MODEL integer :: DimIDs(33) #else integer :: DimIDs(32) #endif integer :: r2dgrd(4), ru2dgrd(4), rv2dgrd(4) integer :: sp2dgrd(3), sr2dgrd(3), su2dgrd(3), sv2dgrd(3) integer :: sr3dgrd(4), su3dgrd(4), sv3dgrd(4) integer :: t2dgrd(4), u2dgrd(4), v2dgrd(4) integer :: Vsize(4) #if defined VEGETATION # if defined VEG_DRAG || defined VEG_BIOMASS integer :: v3pgrd(4) # endif #endif integer :: def_dim #ifdef INWAVE_MODEL integer :: r3degrd(4) integer :: u3degrd(4) integer :: v3degrd(4) integer :: t3degrd(4) #endif #ifdef SOLVE3D integer :: itrc integer :: k3dgrd(5), t3dgrd(5) integer :: r3dgrd(4), ru3dgrd(5), rv3dgrd(5) integer :: u3dgrd(5), v3dgrd(5), w3dgrd(4) #endif real(r8) :: Aval(6) character (len=120) :: Vinfo(Natt) character (len=256) :: ncname ! SourceFile=__FILE__ ! !======================================================================= ! Create a new restart NetCDF file. !======================================================================= ! ! Activate creation of restart NetCDF file. Create a new restart ! file if during a restart run, the restart filename "RST(ng)%name" ! is different than the initial filename "INI(ng)%name". ! IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ncname=RST(ng)%name Ldefine=.FALSE. IF (((nrrec(ng).eq.0).and.(iic(ng).eq.ntstart(ng))).or. & & ((nrrec(ng).ne.0).and. & & (TRIM(ncname).ne.TRIM(INI(ng)%name)))) THEN Ldefine=.TRUE. END IF ! DEFINE : IF (Ldefine) THEN CALL netcdf_create (ng, iNLM, TRIM(ncname), RST(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) THEN IF (Master) WRITE (stdout,10) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #ifdef SOLVE3D # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'N', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef SEDIMENT status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'NST', & & NST, DimIDs(32)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif ! #ifdef INWAVE_MODEL status=def_dim(ng, iNLM, RST(ng)%ncid, ncname,'ND', & ND, DimIDs(33)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif # if defined VEGETATION # if defined VEG_DRAG || defined VEG_BIOMASS status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'NVEG', & & NVEG, DimIDs(35)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif ! # if defined VARIABLE_CDOM && defined SPECTRAL_LIGHT status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef ECOSIM status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif #endif status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'boundary', & & 4, DimIDs(14)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef FOUR_DVAR status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #ifdef PERFECT_RESTART status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'two', & & 2, DimIDs(30)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, 'three', & & 3, DimIDs(31)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif status=def_dim(ng, iNLM, RST(ng)%ncid, ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & nf90_unlimited, DimIDs(12)) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN recdim=DimIDs(12) ! ! Set number of dimensions for output variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) nvd3=2 nvd4=2 nvd5=2 #else nvd3=3 nvd4=4 nvd5=5 #endif ! ! Define dimension vectors for staggered tracer type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) sr2dgrd(1)=DimIDs(17) sr2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) r3dgrd(1)=DimIDs(20) r3dgrd(2)=DimIDs(12) # endif #else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) sr2dgrd(1)=DimIDs( 1) sr2dgrd(2)=DimIDs( 5) sr2dgrd(3)=DimIDs(12) # ifdef PERFECT_RESTART t2dgrd(3)=DimIDs(31) t2dgrd(4)=DimIDs(12) # else t2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) r3dgrd(1)=DimIDs( 1) r3dgrd(2)=DimIDs( 5) r3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART t3dgrd(4)=DimIDs(30) t3dgrd(5)=DimIDs(12) # else t3dgrd(4)=DimIDs(12) # endif r3dgrd(4)=DimIDs(12) # endif #endif ! ! Define dimension vectors for staggered type variables at PSI-points. ! sp2dgrd(1)=DimIDs( 4) sp2dgrd(2)=DimIDs( 8) sp2dgrd(3)=DimIDs(12) ! ! Define dimension vectors for staggered u-momentum type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif #else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) # ifdef PERFECT_RESTART u2dgrd(3)=DimIDs(31) u2dgrd(4)=DimIDs(12) # else u2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART u3dgrd(4)=DimIDs(30) u3dgrd(5)=DimIDs(12) # else u3dgrd(4)=DimIDs(12) # endif # endif #endif ! ! Define dimensions for the plant array variables ! #if !defined PERFECT_RESTART && defined VEGETATION # if defined VEG_DRAG || defined VEG_BIOMASS v3pgrd(1)=DimIDs( 1) v3pgrd(2)=DimIDs( 5) v3pgrd(3)=DimIDs(35) v3pgrd(4)=DimIDs(12) # endif #endif #ifdef INWAVE_MODEL ! ! Define dimension vector for energy wave layer type variables. ! r3degrd(1)=DimIDs( 1) r3degrd(2)=DimIDs( 5) r3degrd(3)=DimIDs(33) r3degrd(4)=DimIDs(12) u3degrd(1)=DimIDs( 2) u3degrd(2)=DimIDs( 6) u3degrd(3)=DimIDs(33) u3degrd(4)=DimIDs(12) v3degrd(1)=DimIDs( 3) v3degrd(2)=DimIDs( 7) v3degrd(3)=DimIDs(33) v3degrd(4)=DimIDs(12) t3degrd(1)=DimIDs( 1) t3degrd(2)=DimIDs( 5) t3degrd(3)=DimIDs(33) t3degrd(4)=DimIDs(12) #endif ! ! Define dimension vectors for staggered v-momentum type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif #else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) # ifdef PERFECT_RESTART v2dgrd(3)=DimIDs(31) v2dgrd(4)=DimIDs(12) # else v2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART v3dgrd(4)=DimIDs(30) v3dgrd(5)=DimIDs(12) # else v3dgrd(4)=DimIDs(12) # endif # endif #endif #ifdef PERFECT_RESTART ! ! Define dimension vectors for RHS free-surface equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) r2dgrd(1)=DimIDs(17) r2dgrd(2)=DimIDs(12) # else r2dgrd(1)=DimIDs( 1) r2dgrd(2)=DimIDs( 5) r2dgrd(3)=DimIDs(30) r2dgrd(4)=DimIDs(12) # endif ! ! Define dimension vectors for RHS u-momentum equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) ru2dgrd(1)=DimIDs(18) ru2dgrd(2)=DimIDs(12) # ifdef SOLVE3D ru2dgrd(1)=DimIDs(21) ru2dgrd(2)=DimIDs(12) # endif # else ru2dgrd(1)=DimIDs( 2) ru2dgrd(2)=DimIDs( 6) ru2dgrd(3)=DimIDs(30) ru2dgrd(4)=DimIDs(12) # ifdef SOLVE3D ru3dgrd(1)=DimIDs( 2) ru3dgrd(2)=DimIDs( 6) ru3dgrd(3)=DimIDs(10) ru3dgrd(4)=DimIDs(30) ru3dgrd(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for RHS v-momentum equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) rv2dgrd(1)=DimIDs(19) rv2dgrd(2)=DimIDs(12) # ifdef SOLVE3D rv3dgrd(1)=DimIDs(22) rv3dgrd(2)=DimIDs(12) # endif # else rv2dgrd(1)=DimIDs( 3) rv2dgrd(2)=DimIDs( 7) rv2dgrd(3)=DimIDs(30) rv2dgrd(4)=DimIDs(12) # ifdef SOLVE3D rv3dgrd(1)=DimIDs( 3) rv3dgrd(2)=DimIDs( 7) rv3dgrd(3)=DimIDs(10) rv3dgrd(4)=DimIDs(30) rv3dgrd(5)=DimIDs(12) # endif # endif #endif #ifdef SOLVE3D ! ! Define dimension vector for staggered w-momentum type variables. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # ifdef PERFECT_RESTART k3dgrd(1)=DimIDs(23) k3dgrd(2)=DimIDs(12) # endif # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # ifdef PERFECT_RESTART k3dgrd(1)=DimIDs( 1) k3dgrd(2)=DimIDs( 5) k3dgrd(3)=DimIDs(10) k3dgrd(4)=DimIDs(30) k3dgrd(5)=DimIDs(12) # endif # endif #endif ! ! Define dimension vector for sediment, radiation stress variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) su2dgrd(1)=DimIDs(18) su2dgrd(2)=DimIDs(12) sv2dgrd(1)=DimIDs(19) sv2dgrd(2)=DimIDs(12) #else su2dgrd(1)=DimIDs( 2) su2dgrd(2)=DimIDs( 6) su2dgrd(3)=DimIDs(12) sv2dgrd(1)=DimIDs( 3) sv2dgrd(2)=DimIDs( 7) sv2dgrd(3)=DimIDs(12) #endif #ifdef SOLVE3D # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) sr3dgrd(1)=DimIDs(24) sr3dgrd(2)=DimIDs(12) su3dgrd(1)=DimIDs(21) su3dgrd(2)=DimIDs(12) sv3dgrd(1)=DimIDs(22) sv3dgrd(2)=DimIDs(12) # else sr3dgrd(1)=DimIDs( 1) sr3dgrd(2)=DimIDs( 5) sr3dgrd(3)=DimIDs(16) sr3dgrd(4)=DimIDs(12) su3dgrd(1)=DimIDs( 2) su3dgrd(2)=DimIDs( 6) su3dgrd(3)=DimIDs( 9) su3dgrd(4)=DimIDs(12) sv3dgrd(1)=DimIDs( 3) sv3dgrd(2)=DimIDs( 7) sv3dgrd(3)=DimIDs( 9) sv3dgrd(4)=DimIDs(12) # endif #endif ! ! Initialize unlimited time record dimension. ! RST(ng)%Rindex=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iNLM, RST(ng)%ncid, ncname, DimIDs) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- #ifdef PERFECT_RESTART ! ! Define time-stepping indices. ! # ifdef SOLVE3D Vinfo( 1)='nstp' Vinfo( 2)='3D equations time level index, nstp' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='nrhs' Vinfo( 2)='3D equations time level index, nrhs' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='nnew' Vinfo( 2)='3D equations time level index, nnew' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif Vinfo( 1)='kstp' Vinfo( 2)='3D equations time level index, kstp' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='krhs' Vinfo( 2)='3D equations time level index, krhs' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='knew' Vinfo( 2)='3D equations time level index, knew' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef ICE_MODEL Vinfo( 1)='linew' Vinfo( 2)='ice equations time level index, linew' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='liold' Vinfo( 2)='ice equations time level index, liold' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='liunw' Vinfo( 2)='ice equations time level index, liunw' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='liuol' Vinfo( 2)='ice equations time level index, liuol' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='lienw' Vinfo( 2)='ice equations time level index, lienw' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN Vinfo( 1)='lieol' Vinfo( 2)='ice equations time level index, lieol' status=def_var(ng, iNLM, RST(ng)%ncid, varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif #endif ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) WRITE (Vinfo( 3),'(a,a)') 'seconds since ', TRIM(Rclock%string) Vinfo( 4)=TRIM(Rclock%calendar) Vinfo(14)=Vname(4,idtime) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idtime), & & NF_TOUT, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef WET_DRY ! ! Define wet/dry mask on PSI-points. ! Vinfo( 1)=Vname(1,idPwet) Vinfo( 2)=Vname(2,idPwet) Vinfo( 3)=Vname(3,idPwet) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(14)=Vname(4,idPwet) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idPwet,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idPwet), & & NF_FOUT, nvd3, sp2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define wet/dry mask on RHO-points. ! Vinfo( 1)=Vname(1,idRwet) Vinfo( 2)=Vname(2,idRwet) Vinfo( 3)=Vname(3,idRwet) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(14)=Vname(4,idRwet) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRwet,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRwet), & & NF_FOUT, nvd3, sr2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define wet/dry mask on U-points. ! Vinfo( 1)=Vname(1,idUwet) Vinfo( 2)=Vname(2,idUwet) Vinfo( 3)=Vname(3,idUwet) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(14)=Vname(4,idUwet) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUwet,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUwet), & & NF_FOUT, nvd3, su2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define wet/dry mask on V-points. ! Vinfo( 1)=Vname(1,idVwet) Vinfo( 2)=Vname(2,idVwet) Vinfo( 3)=Vname(3,idVwet) Vinfo(14)=Vname(4,idVwet) Vinfo(16)=Vname(1,idtime) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVwet,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVwet), & & NF_FOUT, nvd3, sv2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif ! #if defined VEGETATION #include "vegetation_def_rst.h" #endif ! #if defined SEDIMENT && defined SED_MORPH ! ! Define time-varying bathymetry. ! Vinfo( 1)=Vname(1,idbath) Vinfo( 2)=Vname(2,idbath) Vinfo( 3)=Vname(3,idbath) Vinfo(14)=Vname(4,idbath) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idbath,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idbath), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif ! ! Define free-surface. ! Vinfo( 1)=Vname(1,idFsur) Vinfo( 2)=Vname(2,idFsur) Vinfo( 3)=Vname(3,idFsur) Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if !defined WET_DRY && defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idFsur), & # ifdef WET_DRY & NF_FRST, nvd4, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FRST, nvd4, t2dgrd, Aval, Vinfo, ncname) # endif #else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idFsur), & # ifdef WET_DRY & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif #endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of free-surface equation. ! Vinfo( 1)=Vname(1,idRzet) Vinfo( 2)=Vname(2,idRzet) Vinfo( 3)=Vname(3,idRzet) Vinfo(14)=Vname(4,idRzet) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRzet), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif ! ! Define 2D momentum in the XI-direction. ! Vinfo( 1)=Vname(1,idUbar) Vinfo( 2)=Vname(2,idUbar) Vinfo( 3)=Vname(3,idUbar) Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUbar), & & NF_FRST, nvd4, u2dgrd, Aval, Vinfo, ncname) #else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUbar), & & NF_FRST, nvd3, u2dgrd, Aval, Vinfo, ncname) #endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of 2D momentum equation in the XI-direction. ! Vinfo( 1)=Vname(1,idRu2d) Vinfo( 2)=Vname(2,idRu2d) Vinfo( 3)=Vname(3,idRu2d) Vinfo(14)=Vname(4,idRu2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRu2d,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRu2d), & & NF_FRST, nvd4, ru2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif ! ! Define 2D momentum in the ETA-direction. ! Vinfo( 1)=Vname(1,idVbar) Vinfo( 2)=Vname(2,idVbar) Vinfo( 3)=Vname(3,idVbar) Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVbar), & & NF_FRST, nvd4, v2dgrd, Aval, Vinfo, ncname) #else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVbar), & & NF_FRST, nvd3, v2dgrd, Aval, Vinfo, ncname) #endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of 2D momentum equation in the ETA-direction. ! Vinfo( 1)=Vname(1,idRv2d) Vinfo( 2)=Vname(2,idRv2d) Vinfo( 3)=Vname(3,idRv2d) Vinfo(14)=Vname(4,idRv2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRv2d,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRv2d), & & NF_FRST, nvd4, rv2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #ifdef SOLVE3D ! ! Define 3D momentum component in the XI-direction. ! Vinfo( 1)=Vname(1,idUvel) Vinfo( 2)=Vname(2,idUvel) Vinfo( 3)=Vname(3,idUvel) Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUvel), & & NF_FRST, nvd5, u3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUvel), & & NF_FRST, nvd4, u3dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef PERFECT_RESTART ! ! Define RHS of 3D momentum equation in the XI-direction. ! Although this variable is a U-points, a negative value is used ! here to set "s_w" in the "coordinate" attribute. The k=0 index ! is used during coupling in step2d. ! Vinfo( 1)=Vname(1,idRu3d) Vinfo( 2)=Vname(2,idRu3d) Vinfo( 3)=Vname(3,idRu3d) Vinfo(14)=Vname(4,idRu3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(-u3dvar,r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRu3d), & & NF_FRST, nvd5, ru3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif ! ! Define 3D momentum component in the ETA-direction. ! Vinfo( 1)=Vname(1,idVvel) Vinfo( 2)=Vname(2,idVvel) Vinfo( 3)=Vname(3,idVvel) Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVvel), & & NF_FRST, nvd5, v3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVvel), & & NF_FRST, nvd4, v3dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef PERFECT_RESTART ! ! Define RHS of 3D momentum equation in the ETA-direction. ! Although this variable is a V-points, a negative value is used ! here to set "s_w" in the "coordinate" attribute. The k=0 index ! is used during coupling in step2d. ! Vinfo( 1)=Vname(1,idRv3d) Vinfo( 2)=Vname(2,idRv3d) Vinfo( 3)=Vname(3,idRv3d) Vinfo(14)=Vname(4,idRv3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(-v3dvar,r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRv3d), & & NF_FRST, nvd5, rv3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) Vinfo( 1)=Vname(1,idTvar(itrc)) Vinfo( 2)=Vname(2,idTvar(itrc)) Vinfo( 3)=Vname(3,idTvar(itrc)) Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Tid(itrc), & & NF_FRST, nvd5, t3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Tid(itrc), & & NF_FRST, nvd4, t3dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # if defined PERFECT_RESTART && defined ICE_MODEL ! ! Define surface active tracer fluxes. ! DO itrc=1,NAT Vinfo( 1)=Vname(1,idTsur(itrc)) Vinfo( 2)=Vname(2,idTsur(itrc)) Vinfo( 3)=Vname(3,idTsur(itrc)) IF (itrc.eq.itemp) THEN Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(14)=Vname(4,idTsur(itrc)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTsur(itrc),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idTsur(itrc)), NF_FRST, & & nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Define surface U-momentum stress. ! Vinfo( 1)=Vname(1,idUsms) Vinfo( 2)=Vname(2,idUsms) Vinfo( 3)=Vname(3,idUsms) Vinfo(14)=Vname(4,idUsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUsms,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUsms), & & NF_FRST, nvd3, su2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define surface V-momentum stress. ! Vinfo( 1)=Vname(1,idVsms) Vinfo( 2)=Vname(2,idVsms) Vinfo( 3)=Vname(3,idVsms) Vinfo(14)=Vname(4,idVsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVsms,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVsms), & & NF_FRST, nvd3, sv2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef INWAVE_MODEL ! ! Define 3D Action density wave energy. ! Vinfo( 1)=Vname(1,idACen) Vinfo( 2)=Vname(2,idACen) Vinfo( 3)=Vname(3,idACen) Vinfo(14)=Vname(4,idACen) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idACen), & & NF_FRST, nvd4, r3degrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define Peak period. ! Vinfo( 1)=Vname(1,idACtp) Vinfo( 2)=Vname(2,idACtp) Vinfo( 3)=Vname(3,idACtp) Vinfo(14)=Vname(4,idACtp) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idACtp), & & NF_FOUT, nvd4, t3degrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined BENTHIC !------------------------------------------ ! Define benthic tracer type variables. !------------------------------------------ DO itrc=1,NBeT(ng) rstBid(itrc,ng) = var_id(i) IF (Hout(idBeTvar(itrc),ng)) THEN Vinfo( 1)=Vname(1,idBeTvar(itrc)) Vinfo( 2)=Vname(2,idBeTvar(itrc)) Vinfo(3)=Vname(3,idBeTvar(itrc)) Vinfo(14)=Vname(4,idBeTvar(itrc)) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(r2dvar,r8) status=def_var(ng,iNLM,RST(ng)%ncid,RST(ng)%Bid(itrc), & & NF_FOUT, nvd3,t2dgrd,Aval,Vinfo,ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN !Will need to switch this if have more than one depth level for benthos ! status=def_var(ncRSTid(ng),hisBid(itrc,ng),NF_FOUT, & ! & nvd4,t3dgrd,Aval,Vinfo,ncname) END IF END DO # endif !------------------------------------------ ! Define ice bio tracer type variables. !------------------------------------------ # if defined ICE_BIO # ifdef CLIM_ICE_1D DO itrc=1,NIceT(ng) IF (Hout(idIceBeTvar(itrc),ng)) THEN Vinfo( 1)=Vname(1,idIceBeTvar(itrc)) Vinfo( 2)=Vname(2,idIceBeTvar(itrc)) Vinfo(3)=Vname(3,idIceBeTvar(itrc)) Vinfo(14)=Vname(4,idIceBeTvar(itrc)) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(r2dvar,r8) status=def_var(ng,iNLM,RST(ng)%ncid,RST(ng)%IceBid(itrc), & & NF_FOUT, nvd3,t2dgrd,Aval,Vinfo,ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF END DO # endif # endif ! ! Define density anomaly. ! Vinfo( 1)=Vname(1,idDano) Vinfo( 2)=Vname(2,idDano) Vinfo( 3)=Vname(3,idDano) Vinfo(14)=Vname(4,idDano) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idDano,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idDano), & & NF_FRST, nvd4, r3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef NEMURO_SED1 ! ! Define PON in sediment. ! Vinfo( 1)=Vname(1,idPONsed) Vinfo( 2)=Vname(2,idPONsed) Vinfo( 3)=Vname(3,idPONsed) Vinfo(14)=Vname(4,idPONsed) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idPONsed,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idPONsed), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define OPAL in sediment. ! Vinfo( 1)=Vname(1,idOPALsed) Vinfo( 2)=Vname(2,idOPALsed) Vinfo( 3)=Vname(3,idOPALsed) Vinfo(14)=Vname(4,idOPALsed) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idOPALsed,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idOPALsed), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define DENIT in sediment. ! Vinfo( 1)=Vname(1,idDENITsed) Vinfo( 2)=Vname(2,idDENITsed) Vinfo( 3)=Vname(3,idDENITsed) Vinfo(14)=Vname(4,idDENITsed) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idDENITsed,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idDENITsed), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define buried PON in sediment. ! Vinfo( 1)=Vname(1,idPONbur) Vinfo( 2)=Vname(2,idPONbur) Vinfo( 3)=Vname(3,idPONbur) Vinfo(14)=Vname(4,idPONbur) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idPONbur,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idPONbur), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define buried OPAL in sediment. ! Vinfo( 1)=Vname(1,idOPALbur) Vinfo( 2)=Vname(2,idOPALbur) Vinfo( 3)=Vname(3,idOPALbur) Vinfo(14)=Vname(4,idOPALbur) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idOPALbur,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idOPALbur), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef LMD_SKPP ! ! Define depth of surface boundary layer. ! Vinfo( 1)=Vname(1,idHsbl) Vinfo( 2)=Vname(2,idHsbl) Vinfo( 3)=Vname(3,idHsbl) Vinfo(14)=Vname(4,idHsbl) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHsbl,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHsbl), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # ifdef LMD_BKPP ! ! Define depth of bottom boundary layer. ! Vinfo( 1)=Vname(1,idHbbl) Vinfo( 2)=Vname(2,idHbbl) Vinfo( 3)=Vname(3,idHbbl) Vinfo(14)=Vname(4,idHbbl) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHbbl,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHbbl), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # if defined PERFECT_RESTART && defined LMD_NONLOCAL ! ! Define out KPP nonlocal transport. ! DO itrc=1,NAT Vinfo( 1)=Vname(1,idGhat(itrc)) Vinfo( 2)=Vname(2,idGhat(itrc)) Vinfo( 3)=Vname(3,idGhat(itrc)) Vinfo(14)=Vname(4,idGhat(itrc)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idGhat(itrc),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idGhat(itrc)), NF_FRST, & & nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # endif # if defined BVF_MIXING || defined LMD_MIXING || \ defined GLS_MIXING || defined MY25_MIXING ! ! Define vertical viscosity coefficient. ! Vinfo( 1)=Vname(1,idVvis) Vinfo( 2)=Vname(2,idVvis) Vinfo( 3)=Vname(3,idVvis) Vinfo(14)=Vname(4,idVvis) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvis,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVvis), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define vertical diffusion coefficient for potential temperature. ! Vinfo( 1)=Vname(1,idTdif) Vinfo( 2)=Vname(2,idTdif) Vinfo( 3)=Vname(3,idTdif) Vinfo(14)=Vname(4,idTdif) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTdif,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idTdif), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef SALINITY ! ! Define vertical diffusion coefficient for salinity. ! Vinfo( 1)=Vname(1,idSdif) Vinfo( 2)=Vname(2,idSdif) Vinfo( 3)=Vname(3,idSdif) Vinfo(14)=Vname(4,idSdif) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSdif,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSdif), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) ! ! Define turbulent kinetic energy. ! Vinfo( 1)=Vname(1,idMtke) Vinfo( 2)=Vname(2,idMtke) Vinfo( 3)=Vname(3,idMtke) Vinfo(14)=Vname(4,idMtke) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtke,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idMtke), & & NF_FRST, nvd5, k3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define turbulent kinetic energy time length scale. ! Vinfo( 1)=Vname(1,idMtls) Vinfo( 2)=Vname(2,idMtls) Vinfo( 3)=Vname(3,idMtls) Vinfo(14)=Vname(4,idMtls) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtls,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idMtls), & & NF_FRST, nvd5, k3dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define vertical mixing turbulent length scale. ! Vinfo( 1)=Vname(1,idVmLS) Vinfo( 2)=Vname(2,idVmLS) Vinfo( 3)=Vname(3,idVmLS) Vinfo(14)=Vname(4,idVmLS) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmLS,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVmLS), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define turbulent kinetic energy vertical diffusion coefficient. ! Vinfo( 1)=Vname(1,idVmKK) Vinfo( 2)=Vname(2,idVmKK) Vinfo( 3)=Vname(3,idVmKK) Vinfo(14)=Vname(4,idVmKK) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKK,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVmKK), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef GLS_MIXING ! ! Define turbulent length scale vertical diffusion coefficient. ! Vinfo( 1)=Vname(1,idVmKP) Vinfo( 2)=Vname(2,idVmKP) Vinfo( 3)=Vname(3,idVmKP) Vinfo(14)=Vname(4,idVmKP) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKP,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVmKP), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif # endif # ifdef SEDIMENT # ifdef BEDLOAD ! ! Define Bedload U-direction. ! DO i=1,NST Vinfo( 1)=Vname(1,idUbld(i)) Vinfo( 2)=Vname(2,idUbld(i)) Vinfo( 3)=Vname(3,idUbld(i)) Vinfo(14)=Vname(4,idUbld(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbld(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idUbld(i)), NF_FRST, & & nvd3, su2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define Bedload V-direction. ! Vinfo( 1)=Vname(1,idVbld(i)) Vinfo( 2)=Vname(2,idVbld(i)) Vinfo( 3)=Vname(3,idVbld(i)) Vinfo(14)=Vname(4,idVbld(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbld(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idVbld(i)), NF_FRST, & & nvd3, sv2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # endif ! ! Define sediment fraction of each size class in each bed layer. ! DO i=1,NST Vinfo( 1)=Vname(1,idfrac(i)) Vinfo( 2)=Vname(2,idfrac(i)) Vinfo( 3)=Vname(3,idfrac(i)) Vinfo(14)=Vname(4,idfrac(i)) Vinfo(16)=Vname(1,idtime) WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idfrac(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idfrac(i)), NF_FRST, & & nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Define sediment mass of each size class in each bed layer. ! DO i=1,NST Vinfo( 1)=Vname(1,idBmas(i)) Vinfo( 2)=Vname(2,idBmas(i)) Vinfo( 3)=Vname(3,idBmas(i)) Vinfo(14)=Vname(4,idBmas(i)) Vinfo(16)=Vname(1,idtime) WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idBmas(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idBmas(i)), NF_FRST, & & nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO ! ! Define sediment properties in each bed layer. ! DO i=1,MBEDP Vinfo( 1)=Vname(1,idSbed(i)) Vinfo( 2)=Vname(2,idSbed(i)) Vinfo( 3)=Vname(3,idSbed(i)) Vinfo(14)=Vname(4,idSbed(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSbed(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idSbed(i)), NF_FRST, & & nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # endif # if defined SEDIMENT || defined BBL_MODEL ! ! define exposed sediment layer properties. Notice that only the ! first four properties (mean grain diameter, mean grain density, ! mean settling velocity, mean critical erosion stress, ! ripple length and ripple height) are written. ! DO i=1,6 Vinfo( 1)=Vname(1,idBott(i)) Vinfo( 2)=Vname(2,idBott(i)) Vinfo( 3)=Vname(3,idBott(i)) Vinfo(14)=Vname(4,idBott(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idBott(i),ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, & & RST(ng)%Vid(idBott(i)), NF_FRST, & & nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END DO # endif #endif #ifdef ICE_MODEL ! ! Define 2D ice momentum in the XI-direction. ! Vinfo( 1)=Vname(1,idUice) Vinfo( 2)=Vname(2,idUice) Vinfo( 3)=Vname(3,idUice) Vinfo(14)=Vname(4,idUice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUice,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUice), & & NF_FRST, nvd4, ru2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idUice), & & NF_FRST, nvd3, u2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define 2D ice momentum in the ETA-direction. ! Vinfo( 1)=Vname(1,idVice) Vinfo( 2)=Vname(2,idVice) Vinfo( 3)=Vname(3,idVice) Vinfo(14)=Vname(4,idVice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVice,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVice), & & NF_FRST, nvd4, rv2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idVice), & & NF_FRST, nvd3, v2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice concentration. ! Vinfo( 1)=Vname(1,idAice) Vinfo( 2)=Vname(2,idAice) Vinfo( 3)=Vname(3,idAice) Vinfo(14)=Vname(4,idAice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idAice,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idAice), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idAice), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice average thickness. ! Vinfo( 1)=Vname(1,idHice) Vinfo( 2)=Vname(2,idHice) Vinfo( 3)=Vname(3,idHice) Vinfo(14)=Vname(4,idHice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHice,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHice), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHice), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice/snow surface temperature. ! Vinfo( 1)=Vname(1,idTice) Vinfo( 2)=Vname(2,idTice) Vinfo( 3)=Vname(3,idTice) Vinfo(14)=Vname(4,idTice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTice,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idTice), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define snow thickness. ! Vinfo( 1)=Vname(1,idHsno) Vinfo( 2)=Vname(2,idHsno) Vinfo( 3)=Vname(3,idHsno) Vinfo(14)=Vname(4,idHsno) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHsno,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHsno), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHsno), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef MELT_PONDS ! ! Define surface water fraction (on ice). ! Vinfo( 1)=Vname(1,idApond) Vinfo( 2)=Vname(2,idApond) Vinfo( 3)=Vname(3,idApond) Vinfo(14)=Vname(4,idApond) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idApond,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idApond), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idApond), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define surface water thickness (on ice). ! Vinfo( 1)=Vname(1,idHpond) Vinfo( 2)=Vname(2,idHpond) Vinfo( 3)=Vname(3,idHpond) Vinfo(14)=Vname(4,idHpond) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHpond,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHpond), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idHpond), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif ! ! Define ice age. ! Vinfo( 1)=Vname(1,idAgeice) Vinfo( 2)=Vname(2,idAgeice) Vinfo( 3)=Vname(3,idAgeice) Vinfo(14)=Vname(4,idAgeice) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idAgeice,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idAgeice), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idAgeice), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice internal temperature. ! Vinfo( 1)=Vname(1,idTimid) Vinfo( 2)=Vname(2,idTimid) Vinfo( 3)=Vname(3,idTimid) Vinfo(14)=Vname(4,idTimid) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTimid,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idTimid), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idTimid), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define internal ice stress component 11. ! Vinfo( 1)=Vname(1,idSig11) Vinfo( 2)=Vname(2,idSig11) Vinfo( 3)=Vname(3,idSig11) Vinfo(14)=Vname(4,idSig11) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSig11,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig11), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig11), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define internal ice stress component 22. ! Vinfo( 1)=Vname(1,idSig22) Vinfo( 2)=Vname(2,idSig22) Vinfo( 3)=Vname(3,idSig22) Vinfo(14)=Vname(4,idSig22) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSig22,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig22), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig22), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define internal ice stress component 12. ! Vinfo( 1)=Vname(1,idSig12) Vinfo( 2)=Vname(2,idSig12) Vinfo( 3)=Vname(3,idSig12) Vinfo(14)=Vname(4,idSig12) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSig12,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig12), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idSig12), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice-water friction velocity. ! Vinfo( 1)=Vname(1,idTauiw) Vinfo( 2)=Vname(2,idTauiw) Vinfo( 3)=Vname(3,idTauiw) Vinfo(14)=Vname(4,idTauiw) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTauiw,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idTauiw), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define ice-water momentum transfer coefficient. ! Vinfo( 1)=Vname(1,idChuiw) Vinfo( 2)=Vname(2,idChuiw) Vinfo( 3)=Vname(3,idChuiw) Vinfo(14)=Vname(4,idChuiw) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idChuiw,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idChuiw), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define salinity of molecular sub-layer under ice. ! Vinfo( 1)=Vname(1,idS0mk) Vinfo( 2)=Vname(2,idS0mk) Vinfo( 3)=Vname(3,idS0mk) Vinfo(14)=Vname(4,idS0mk) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idS0mk,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idS0mk), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define temperature of molecular sub-layer under ice. ! Vinfo( 1)=Vname(1,idT0mk) Vinfo( 2)=Vname(2,idT0mk) Vinfo( 3)=Vname(3,idT0mk) Vinfo(14)=Vname(4,idT0mk) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idT0mk,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idT0mk), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN #endif #ifdef NCEP_FLUXES ! ! Define NCEP gustiness squared. ! Vinfo( 1)=Vname(1,idWg2d) Vinfo( 2)=Vname(2,idWg2d) Vinfo( 3)=Vname(3,idWg2d) Vinfo(14)=Vname(4,idWg2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idWg2d), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define NCEP air-ice/ocean momentum transfer coefficient. ! Vinfo( 1)=Vname(1,idCdd) Vinfo( 2)=Vname(2,idCdd) Vinfo( 3)=Vname(3,idCdd) Vinfo(14)=Vname(4,idCdd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idCdd), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define NCEP air-ice/ocean specific heat transfer coefficient. ! Vinfo( 1)=Vname(1,idChd) Vinfo( 2)=Vname(2,idChd) Vinfo( 3)=Vname(3,idChd) Vinfo(14)=Vname(4,idChd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idChd), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define NCEP air-ice/ocean latent heat transfer coefficient. ! Vinfo( 1)=Vname(1,idCed) Vinfo( 2)=Vname(2,idCed) Vinfo( 3)=Vname(3,idCed) Vinfo(14)=Vname(4,idCed) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idCed), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define model gustiness squared. ! Vinfo( 1)=Vname(1,idWg2m) Vinfo( 2)=Vname(2,idWg2m) Vinfo( 3)=Vname(3,idWg2m) Vinfo(14)=Vname(4,idWg2m) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idWg2m), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define model air-ice/ocean momentum transfer coefficient. ! Vinfo( 1)=Vname(1,idCdm) Vinfo( 2)=Vname(2,idCdm) Vinfo( 3)=Vname(3,idCdm) Vinfo(14)=Vname(4,idCdm) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idCdm), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define model air-ice/ocean specific heat transfer coefficient. ! Vinfo( 1)=Vname(1,idChm) Vinfo( 2)=Vname(2,idChm) Vinfo( 3)=Vname(3,idChm) Vinfo(14)=Vname(4,idChm) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idChm), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define model air-ice/ocean latent heat transfer coefficient. ! Vinfo( 1)=Vname(1,idCem) Vinfo( 2)=Vname(2,idCem) Vinfo( 3)=Vname(3,idCem) Vinfo(14)=Vname(4,idCem) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idCem), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define NCEP near-surface air density. ! Vinfo( 1)=Vname(1,idRhoa) Vinfo( 2)=Vname(2,idRhoa) Vinfo( 3)=Vname(3,idRhoa) Vinfo(14)=Vname(4,idRhoa) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idRhoa), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! #endif #ifdef WEC ! ! Define 2D u-stokes velocity. ! Vinfo( 1)=Vname(1,idU2Sd) Vinfo( 2)=Vname(2,idU2Sd) Vinfo( 3)=Vname(3,idU2Sd) Vinfo(14)=Vname(4,idU2Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idU2Sd,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idU2Sd), & & NF_FRST, nvd3, su2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define 2D v-stokes velocity. ! Vinfo( 1)=Vname(1,idV2Sd) Vinfo( 2)=Vname(2,idV2Sd) Vinfo( 3)=Vname(3,idV2Sd) Vinfo(14)=Vname(4,idV2Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idV2Sd,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idV2Sd), & & NF_FRST, nvd3, sv2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # ifdef SOLVE3D ! ! Define 3D u-stokes velocity. ! Vinfo( 1)=Vname(1,idU3Sd) Vinfo( 2)=Vname(2,idU3Sd) Vinfo( 3)=Vname(3,idU3Sd) Vinfo(14)=Vname(4,idU3Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idU3Sd,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idU3Sd), & & NF_FRST, nvd4, su3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define 3D v-stokes velocity. ! Vinfo( 1)=Vname(1,idV3Sd) Vinfo( 2)=Vname(2,idV3Sd) Vinfo( 3)=Vname(3,idV3Sd) Vinfo(14)=Vname(4,idV3Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idV3Sd,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idV3Sd), & & NF_FRST, nvd4, sv3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define 3D omega-stokes velocity. ! Vinfo( 1)=Vname(1,idW3Sd) Vinfo( 2)=Vname(2,idW3Sd) Vinfo( 3)=Vname(3,idW3Sd) Vinfo(14)=Vname(4,idW3Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idW3Sd,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idW3Sd), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Define 3D w-stokes velocity test ! Vinfo( 1)=Vname(1,idW3St) Vinfo( 2)=Vname(2,idW3St) Vinfo( 3)=Vname(3,idW3St) Vinfo(14)=Vname(4,idW3St) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idW3St,ng),r8) status=def_var(ng, iNLM, RST(ng)%ncid, RST(ng)%Vid(idW3St), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN # endif #endif ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL netcdf_enddef (ng, iNLM, ncname, RST(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iNLM, RST(ng)%ncid, ncname) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN END IF DEFINE ! !======================================================================= ! Open an existing restart file, check its contents, and prepare for ! appending data. !======================================================================= ! QUERY : IF (.not.Ldefine) THEN ncname=RST(ng)%name ! ! Open restart file for read/write. ! CALL netcdf_open (ng, iNLM, ncname, 1, RST(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) THEN WRITE (stdout,30) TRIM(ncname) RETURN END IF ! ! Inquire about the dimensions and check for consistency. ! CALL netcdf_check_dim (ng, iNLM, ncname, & & ncid = RST(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Inquire about the variables. ! CALL netcdf_inq_var (ng, iNLM, ncname, & & ncid = RST(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, & & __FILE__)) RETURN ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! restart variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. RST(ng)%Vid(idtime)=var_id(i) #if defined SEDIMENT && defined SED_MORPH ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idbath))) THEN got_var(idbath)=.TRUE. RST(ng)%Vid(idbath)=var_id(i) #endif #if defined WET_DRY ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRwet))) THEN got_var(idRwet)=.TRUE. RST(ng)%Vid(idRwet)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUwet))) THEN got_var(idUwet)=.TRUE. RST(ng)%Vid(idUwet)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVwet))) THEN got_var(idVwet)=.TRUE. RST(ng)%Vid(idVwet)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idPwet))) THEN got_var(idPwet)=.TRUE. RST(ng)%Vid(idPwet)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. RST(ng)%Vid(idFsur)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRzet))) THEN got_var(idRzet)=.TRUE. RST(ng)%Vid(idRzet)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. RST(ng)%Vid(idUbar)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu2d))) THEN got_var(idRu2d)=.TRUE. RST(ng)%Vid(idRu2d)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. RST(ng)%Vid(idVbar)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv2d))) THEN got_var(idRv2d)=.TRUE. RST(ng)%Vid(idRv2d)=var_id(i) #endif #ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. RST(ng)%Vid(idUvel)=var_id(i) # ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu3d))) THEN got_var(idRu3d)=.TRUE. RST(ng)%Vid(idRu3d)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. RST(ng)%Vid(idVvel)=var_id(i) # ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv3d))) THEN got_var(idRv3d)=.TRUE. RST(ng)%Vid(idRv3d)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idDano))) THEN got_var(idDano)=.TRUE. RST(ng)%Vid(idDano)=var_id(i) # ifdef LMD_SKPP ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHsbl))) THEN got_var(idHsbl)=.TRUE. RST(ng)%Vid(idHsbl)=var_id(i) # endif # ifdef LMD_BKPP ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHbbl))) THEN got_var(idHbbl)=.TRUE. RST(ng)%Vid(idHbbl)=var_id(i) # endif # if defined PERFECT_RESTART && defined LMD_NONLOCAL ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idGhat(itemp)))) THEN got_var(idGhat(itemp))=.TRUE. RST(ng)%Vid(idGhat(itemp))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idGhat(isalt)))) THEN got_var(idGhat(isalt))=.TRUE. RST(ng)%Vid(idGhat(isalt))=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvis))) THEN got_var(idVvis)=.TRUE. RST(ng)%Vid(idVvis)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTdif))) THEN got_var(idTdif)=.TRUE. RST(ng)%Vid(idTdif)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSdif))) THEN got_var(idSdif)=.TRUE. RST(ng)%Vid(idSdif)=var_id(i) # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtke))) THEN got_var(idMtke)=.TRUE. RST(ng)%Vid(idMtke)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtls))) THEN got_var(idMtls)=.TRUE. RST(ng)%Vid(idMtls)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmLS))) THEN got_var(idVmLS)=.TRUE. RST(ng)%Vid(idVmLS)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKK))) THEN got_var(idVmKK)=.TRUE. RST(ng)%Vid(idVmKK)=var_id(i) # ifdef GLS_MIXING ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKP))) THEN got_var(idVmKP)=.TRUE. RST(ng)%Vid(idVmKP)=var_id(i) # endif # endif #endif #ifdef INWAVE_MODEL ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idACen))) THEN got_var(idACen)=.TRUE. RST(ng)%Vid(idACen)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idACtp))) THEN got_var(idACtp)=.TRUE. RST(ng)%Vid(idACtp)=var_id(i) #endif #if defined WEC ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idU2Sd))) THEN got_var(idU2Sd)=.TRUE. RST(ng)%Vid(idU2Sd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idV2Sd))) THEN got_var(idV2Sd)=.TRUE. RST(ng)%Vid(idV2Sd)=var_id(i) # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idU3Sd))) THEN got_var(idU3Sd)=.TRUE. RST(ng)%Vid(idU3Sd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idV3Sd))) THEN got_var(idV3Sd)=.TRUE. RST(ng)%Vid(idV3Sd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idW3Sd))) THEN got_var(idW3Sd)=.TRUE. RST(ng)%Vid(idW3Sd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idW3St))) THEN got_var(idW3St)=.TRUE. RST(ng)%Vid(idW3St)=var_id(i) # endif #endif #if defined NEMURO_SED1 ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idPONsed))) THEN got_var(idPONsed)=.TRUE. RST(ng)%Vid(idPONsed)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idOPALsed))) THEN got_var(idOPALsed)=.TRUE. RST(ng)%Vid(idOPALsed)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idDENITsed))) THEN got_var(idDENITsed)=.TRUE. RST(ng)%Vid(idDENITsed)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idPONbur))) THEN got_var(idPONbur)=.TRUE. RST(ng)%Vid(idPONbur)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idOPALbur))) THEN got_var(idOPALbur)=.TRUE. RST(ng)%Vid(idOPALbur)=var_id(i) #endif #if defined PERFECT_RESTART && defined ICE_MODEL ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUsms))) THEN got_var(idUsms)=.TRUE. RST(ng)%Vid(idUsms)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVsms))) THEN got_var(idVsms)=.TRUE. RST(ng)%Vid(idVsms)=var_id(i) #endif END IF #ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. RST(ng)%Tid(itrc)=var_id(i) END IF END DO # if defined PERFECT_RESTART && defined ICE_MODEL DO itrc=1,NAT IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTsur(itrc)))) THEN got_var(idTsur(itrc))=.TRUE. RST(ng)%Vid(idTsur(itrc))=var_id(i) END IF END DO # endif # ifdef BENTHIC DO itrc=1,NBeT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idBeTvar(itrc)))) THEN got_var(idBeTvar(itrc))=.TRUE. rstBid(itrc,ng)=var_id(i) END IF END DO # endif # ifdef SEDIMENT DO itrc=1,NST IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idfrac(itrc)))) THEN got_var(idfrac(itrc))=.TRUE. RST(ng)%Vid(idfrac(itrc))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idBmas(itrc)))) THEN got_var(idBmas(itrc))=.TRUE. RST(ng)%Vid(idBmas(itrc))=var_id(i) # ifdef BEDLOAD ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idUbld(itrc)))) THEN got_var(idUbld(itrc))=.true. RST(ng)%Vid(idUbld(itrc))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idVbld(itrc)))) THEN got_var(idVbld(itrc))=.true. RST(ng)%Vid(idVbld(itrc))=var_id(i) # endif END IF END DO DO itrc=1,MBEDP IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSbed(itrc)))) THEN got_var(idSbed(itrc))=.TRUE. RST(ng)%Vid(idSbed(itrc))=var_id(i) END IF END DO # endif # if defined SEDIMENT || defined BBL_MODEL DO itrc=1,6 IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idBott(itrc)))) THEN got_var(idBott(itrc))=.TRUE. RST(ng)%Vid(idBott(itrc))=var_id(i) END IF END DO # endif #endif #ifdef ICE_MODEL IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUice))) THEN got_var(idUice)=.TRUE. RST(ng)%Vid(idUice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVice))) THEN got_var(idVice)=.TRUE. RST(ng)%Vid(idVice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idAice))) THEN got_var(idAice)=.TRUE. RST(ng)%Vid(idAice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHice))) THEN got_var(idHice)=.TRUE. RST(ng)%Vid(idHice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTice))) THEN got_var(idTice)=.TRUE. RST(ng)%Vid(idTice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHsno))) THEN got_var(idHsno)=.TRUE. RST(ng)%Vid(idHsno)=var_id(i) # ifdef MELT_PONDS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idApond))) THEN got_var(idApond)=.TRUE. RST(ng)%Vid(idApond)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHpond))) THEN got_var(idHpond)=.TRUE. RST(ng)%Vid(idHpond)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idAgeice))) THEN got_var(idAgeice)=.TRUE. RST(ng)%Vid(idAgeice)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTimid))) THEN got_var(idTimid)=.TRUE. RST(ng)%Vid(idTimid)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSig11))) THEN got_var(idSig11)=.TRUE. RST(ng)%Vid(idSig11)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSig22))) THEN got_var(idSig22)=.TRUE. RST(ng)%Vid(idSig22)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSig12))) THEN got_var(idSig12)=.TRUE. RST(ng)%Vid(idSig12)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTauiw))) THEN got_var(idTauiw)=.TRUE. RST(ng)%Vid(idTauiw)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idChuiw))) THEN got_var(idChuiw)=.TRUE. RST(ng)%Vid(idChuiw)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idS0mk))) THEN got_var(idS0mk)=.TRUE. RST(ng)%Vid(idS0mk)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idT0mk))) THEN got_var(idT0mk)=.TRUE. RST(ng)%Vid(idT0mk)=var_id(i) END IF #endif #ifdef NCEP_FLUXES IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idWg2d))) THEN got_var(idWg2d)=.TRUE. RST(ng)%Vid(idWg2d)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idCdd))) THEN got_var(idCdd)=.TRUE. RST(ng)%Vid(idCdd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idChd))) THEN got_var(idChd)=.TRUE. RST(ng)%Vid(idChd)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idCed))) THEN got_var(idCed)=.TRUE. RST(ng)%Vid(idCed)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idWg2m))) THEN got_var(idWg2m)=.TRUE. RST(ng)%Vid(idWg2m)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idCdm))) THEN got_var(idCdm)=.TRUE. RST(ng)%Vid(idCdm)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idChm))) THEN got_var(idChm)=.TRUE. RST(ng)%Vid(idChm)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idCem))) THEN got_var(idCem)=.TRUE. RST(ng)%Vid(idCem)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRhoa))) THEN got_var(idRhoa)=.TRUE. RST(ng)%Vid(idRhoa)=var_id(i) END IF #endif END DO #if defined VEGETATION # if defined VEG_DRAG || defined VEG_BIOMASS DO i=1,NVEGP IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idvprp(i)))) THEN got_var(idvprp(i))=.TRUE. RST(ng)%Vid(idvprp(i))=var_id(i) END IF END DO # endif #endif ! ! Check if initialization variables are available in input NetCDF ! file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF #if defined SEDIMENT && defined SED_MORPH IF (.not.got_var(idbath)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idbath)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #if defined WET_DRY IF (.not.got_var(idRwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idPwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idPwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idFsur)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRzet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRzet)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idUbar)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRu2d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRu2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idVbar)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRv2d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRv2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #ifdef SOLVE3D IF (.not.got_var(idUvel)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef PERFECT_RESTART IF (.not.got_var(idRu3d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRu3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idVvel)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef PERFECT_RESTART IF (.not.got_var(idRv3d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRv3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idDano)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idDano)), & & TRIM(ncname) exit_flag=3 RETURN END IF # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) IF (.not.got_var(idMtke)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idMtke)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idMtls)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idMtls)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmLS)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmLS)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmKK)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmKK)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef GLS_MIXING IF (.not.got_var(idVmKP)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmKP)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif #endif #if defined WEC IF (.not.got_var(idU2Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idU2Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idV2Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idV2Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef SOLVE3D IF (.not.got_var(idU3Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idU3Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idV3Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idV3Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idW3Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idW3Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idW3St)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idW3St)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif #endif #ifdef INWAVE_MODEL IF (.not.got_var(idACen)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idACen)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idACtp)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idACtp)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #ifdef NEMURO_SED1 IF (.not.got_var(idPONsed)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idPONsed)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idOPALsed)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idOPALsed)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idDENITsed)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idDENITsed)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idPONbur)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idPONbur)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idOPALbur)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idOPALbur)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # ifdef VEGETATION # if defined VEG_DRAG || defined VEG_BIOMASS DO i=1,NVEGP IF (.not.got_var(idvprp(i)).and.Hout(idvprp(i),ng)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idvprp(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif # endif # ifdef SEDIMENT DO i=1,NST IF (.not.got_var(idfrac(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idfrac(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idBmas(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idBmas(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef BEDLOAD IF (.not.got_var(idUbld(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUbld(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbld(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVbld(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif END DO DO i=1,MBEDP IF (.not.got_var(idSbed(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idSbed(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif # if defined SEDIMENT || defined BBL_MODEL DO i=1,6 IF (.not.got_var(idBott(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idBott(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif #endif #ifdef ICE_MODEL IF (.not.got_var(idUice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idAice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idAice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idHice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idHice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idTice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idTice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idHsno)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idHsno)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef MELT_PONDS IF (.not.got_var(idApond)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idApond)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idHpond)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idHpond)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idAgeice)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idAgeice)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idTimid)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idTimid)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSig11)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idSig11)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSig22)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idSig22)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSig12)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idSig12)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idTauiw)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idTauiw)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idChuiw)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idChuiw)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idS0mk)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idS0mk)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idT0mk)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idT0mk)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #ifdef NCEP_FLUXES IF (.not.got_var(idWg2d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idWg2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idCdd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idCdd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idChd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idChd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idCed)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idCed)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idWg2m)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idWg2m)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idCdm)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idCdm)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idChm)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idChm)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idCem)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idCem)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRhoa)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRhoa)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif ! ! Set unlimited time record dimension to current value. ! IF (LcycleRST(ng)) THEN RST(ng)%Rindex=0 ELSE RST(ng)%Rindex=rec_size END IF END IF QUERY ! 10 FORMAT (/,' DEF_RST - unable to create restart NetCDF file: ',a) 20 FORMAT (1pe11.4,1x,'millimeter') 30 FORMAT (/,' DEF_RST - unable to open restart NetCDF file: ',a) 40 FORMAT (/,' DEF_RST - unable to find variable: ',a,2x, & & ' in restart NetCDF file: ',a) RETURN END SUBROUTINE def_rst