SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!     ..
!
!  Purpose
!  =======
!
!  DGEMV  performs one of the matrix-vector operations
!
!     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
!
!  where alpha and beta are scalars, x and y are vectors and A is an
!  m by n matrix.
!
!  Arguments
!  ==========
!
!  TRANS  - CHARACTER*1.
!           On entry, TRANS specifies the operation to be performed as
!           follows:
!
!              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!
!              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
!
!              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
!
!           Unchanged on exit.
!
!  M      - INTEGER.
!           On entry, M specifies the number of rows of the matrix A.
!           M must be at least zero.
!           Unchanged on exit.
!
!  N      - INTEGER.
!           On entry, N specifies the number of columns of the matrix A.
!           N must be at least zero.
!           Unchanged on exit.
!
!  ALPHA  - DOUBLE PRECISION.
!           On entry, ALPHA specifies the scalar alpha.
!           Unchanged on exit.
!
!  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
!           Before entry, the leading m by n part of the array A must
!           contain the matrix of coefficients.
!           Unchanged on exit.
!
!  LDA    - INTEGER.
!           On entry, LDA specifies the first dimension of A as declared
!           in the calling (sub) program. LDA must be at least
!           max( 1, m ).
!           Unchanged on exit.
!
!  X      - DOUBLE PRECISION array of DIMENSION at least
!           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!           and at least
!           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!           Before entry, the incremented array X must contain the
!           vector x.
!           Unchanged on exit.
!
!  INCX   - INTEGER.
!           On entry, INCX specifies the increment for the elements of
!           X. INCX must not be zero.
!           Unchanged on exit.
!
!  BETA   - DOUBLE PRECISION.
!           On entry, BETA specifies the scalar beta. When BETA is
!           supplied as zero then Y need not be set on input.
!           Unchanged on exit.
!
!  Y      - DOUBLE PRECISION array of DIMENSION at least
!           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!           and at least
!           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!           Before entry with BETA non-zero, the incremented array Y
!           must contain the vector y. On exit, Y is overwritten by the
!           updated vector y.
!
!  INCY   - INTEGER.
!           On entry, INCY specifies the increment for the elements of
!           Y. INCY must not be zero.
!           Unchanged on exit.
!
!
!  Level 2 Blas routine.
!
!  -- Written on 22-October-1986.
!     Jack Dongarra, Argonne National Lab.
!     Jeremy Du Croz, Nag Central Office.
!     Sven Hammarling, Nag Central Office.
!     Richard Hanson, Sandia National Labs.
!
!
!     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION TEMP
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
!     ..
!     .. External Functions ..
!     LOGICAL LSAME
!     EXTERNAL LSAME
!     ..
!     .. External Subroutines ..
!     EXTERNAL XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC MAX
!     ..
!
!     Test the input parameters.
!
      INFO = 0
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. &
          .NOT.LSAME(TRANS,'C')) THEN
          INFO = 1
      ELSE IF (M.LT.0) THEN
          INFO = 2
      ELSE IF (N.LT.0) THEN
          INFO = 3
      ELSE IF (LDA.LT.MAX(1,M)) THEN
          INFO = 6
      ELSE IF (INCX.EQ.0) THEN
          INFO = 8
      ELSE IF (INCY.EQ.0) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DGEMV ',INFO)
          RETURN
      END IF
!
!     Quick return if possible.
!
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR. &
          ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
!
!     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
!     up the start points in  X  and  Y.
!
      IF (LSAME(TRANS,'N')) THEN
          LENX = N
          LENY = M
      ELSE
          LENX = M
          LENY = N
      END IF
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (LENX-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (LENY-1)*INCY
      END IF
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through A.
!
!     First form  y := beta*y.
!
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,LENY
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,LENY
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,LENY
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,LENY
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      IF (LSAME(TRANS,'N')) THEN
!
!        Form  y := alpha*A*x + y.
!
          JX = KX
          IF (INCY.EQ.1) THEN
              DO 60 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*X(JX)
                      DO 50 I = 1,M
                          Y(I) = Y(I) + TEMP*A(I,J)
   50                 CONTINUE
                  END IF
                  JX = JX + INCX
   60         CONTINUE
          ELSE
              DO 80 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*X(JX)
                      IY = KY
                      DO 70 I = 1,M
                          Y(IY) = Y(IY) + TEMP*A(I,J)
                          IY = IY + INCY
   70                 CONTINUE
                  END IF
                  JX = JX + INCX
   80         CONTINUE
          END IF
      ELSE
!
!        Form  y := alpha*A'*x + y.
!
          JY = KY
          IF (INCX.EQ.1) THEN
              DO 100 J = 1,N
                  TEMP = ZERO
                  DO 90 I = 1,M
                      TEMP = TEMP + A(I,J)*X(I)
   90             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  100         CONTINUE
          ELSE
              DO 120 J = 1,N
                  TEMP = ZERO
                  IX = KX
                  DO 110 I = 1,M
                      TEMP = TEMP + A(I,J)*X(IX)
                      IX = IX + INCX
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  120         CONTINUE
          END IF
      END IF
!
      RETURN
!
!     End of DGEMV .
!
      END SUBROUTINE DGEMV